包含耗散演化的材料模型整体变分公式

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Philipp Junker , Tobias Bode , Klaus Hackl
{"title":"包含耗散演化的材料模型整体变分公式","authors":"Philipp Junker ,&nbsp;Tobias Bode ,&nbsp;Klaus Hackl","doi":"10.1016/j.jmps.2025.106133","DOIUrl":null,"url":null,"abstract":"<div><div>Based on Hamilton’s principle of stationary action, we present a holistic variational formulation for material modeling including dissipative evolution. To this end, we recall the definition of the action as path integral of the momentum vector. Reformulation of the action and inserting the 1<span><math><mi>st</mi></math></span> and 2<span><math><mi>nd</mi></math></span> Law of Thermodynamics yield an extended Hamilton functional. We show that the stationarity conditions yield well-known expressions as well as new conditions in an extended nested time domain. Introducing an asymptotic two-scale approach transforms the expressions in the nested time domain back to the physical time. Hereby, we receive usual differential equations, e.g., heat conductivity equation, diffusion equation, and Biot equation, and the constitutive laws for, e.g., temperature, entropy, and chemical potential, all from one holistic stationarity principle. Moreover, the formulation in the nested time domain produces additional, virtual conditions that naturally lead to the concept of dissipation distances. Due to its variational origin, our approach yields in a consistent manner a coupled space–time formulation.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106133"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a holistic variational formulation for material modeling including dissipative evolution\",\"authors\":\"Philipp Junker ,&nbsp;Tobias Bode ,&nbsp;Klaus Hackl\",\"doi\":\"10.1016/j.jmps.2025.106133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on Hamilton’s principle of stationary action, we present a holistic variational formulation for material modeling including dissipative evolution. To this end, we recall the definition of the action as path integral of the momentum vector. Reformulation of the action and inserting the 1<span><math><mi>st</mi></math></span> and 2<span><math><mi>nd</mi></math></span> Law of Thermodynamics yield an extended Hamilton functional. We show that the stationarity conditions yield well-known expressions as well as new conditions in an extended nested time domain. Introducing an asymptotic two-scale approach transforms the expressions in the nested time domain back to the physical time. Hereby, we receive usual differential equations, e.g., heat conductivity equation, diffusion equation, and Biot equation, and the constitutive laws for, e.g., temperature, entropy, and chemical potential, all from one holistic stationarity principle. Moreover, the formulation in the nested time domain produces additional, virtual conditions that naturally lead to the concept of dissipation distances. Due to its variational origin, our approach yields in a consistent manner a coupled space–time formulation.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"200 \",\"pages\":\"Article 106133\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625001097\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于Hamilton的稳态作用原理,提出了一个包含耗散演化的整体变分模型。为此,我们回顾一下作用作为动量矢量的路径积分的定义。重新表述作用并引入热力学第一和第二定律,得到了一个扩展的哈密顿泛函。我们证明了平稳性条件在扩展的嵌套时域中产生众所周知的表达式以及新的条件。引入渐近双尺度方法,将嵌套时域中的表达式转换回物理时间。由此,我们得到了通常的微分方程,如导热方程、扩散方程、Biot方程,以及温度、熵、化学势等本构定律,这些都来自于一个整体的平稳原理。此外,嵌套时域中的公式产生额外的虚拟条件,自然导致耗散距离的概念。由于它的变分起源,我们的方法以一致的方式产生一个耦合的时空公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a holistic variational formulation for material modeling including dissipative evolution
Based on Hamilton’s principle of stationary action, we present a holistic variational formulation for material modeling including dissipative evolution. To this end, we recall the definition of the action as path integral of the momentum vector. Reformulation of the action and inserting the 1st and 2nd Law of Thermodynamics yield an extended Hamilton functional. We show that the stationarity conditions yield well-known expressions as well as new conditions in an extended nested time domain. Introducing an asymptotic two-scale approach transforms the expressions in the nested time domain back to the physical time. Hereby, we receive usual differential equations, e.g., heat conductivity equation, diffusion equation, and Biot equation, and the constitutive laws for, e.g., temperature, entropy, and chemical potential, all from one holistic stationarity principle. Moreover, the formulation in the nested time domain produces additional, virtual conditions that naturally lead to the concept of dissipation distances. Due to its variational origin, our approach yields in a consistent manner a coupled space–time formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信