基于金属中心调控的三种新型高能配合物对高氯酸铵热分解催化性能的研究

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Shoufeng Fu, Jiawei Liang, Bing Li, Yanhong Yang, Chenxi Yang, Hongyan Wu, Jiaxing He, Jiayan Guo, Chenghao Wang, Xiaoyan Chen, Jianlin Ren
{"title":"基于金属中心调控的三种新型高能配合物对高氯酸铵热分解催化性能的研究","authors":"Shoufeng Fu,&nbsp;Jiawei Liang,&nbsp;Bing Li,&nbsp;Yanhong Yang,&nbsp;Chenxi Yang,&nbsp;Hongyan Wu,&nbsp;Jiaxing He,&nbsp;Jiayan Guo,&nbsp;Chenghao Wang,&nbsp;Xiaoyan Chen,&nbsp;Jianlin Ren","doi":"10.1016/j.jssc.2025.125376","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the diverse structural configurations and exceptional thermal stability, energetic complexes have been extensively utilized as catalysts for the thermal decomposition of ammonium perchlorate (AP). Nevertheless, enhancing the catalytic activity of these energetic complexes remains a significant challenge. In this study, three nitrogen-rich heterocyclic complexes, M(Hapza)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> (M = Co, Zn, and Cd), were successfully synthesized by the hydrothermal method using 3-aminopyrazole-4-carboxylic acid (H<sub>2</sub>apza) as an energetic ligand. Single-crystal X-ray diffraction analysis revealed that the three complexes are single-nucleated and isomorphic, forming thermally stable three-dimensional supramolecular structures through extensive hydrogen bonding networks. The incorporation of these complexes significantly advanced the high decomposition peak of AP by 26.9–51.4 °C and reduced the activation energy (<em>E</em><sub>a</sub>) by 41.19–52.99 kJ mol<sup>−1</sup>, demonstrating their remarkable catalytic effect on AP. The detonation properties of the complexes were evaluated using the <em>Kamlet-Jacobs</em> equation, revealing that these complexes possess higher detonation velocities (8.9–9.4 km s<sup>−1</sup>) and detonation pressures (36.1–42.4 GPa) compared to traditional energetic materials. Further investigation into the possible catalytic mechanism suggested that metal oxides, generated from the decomposition of metal complexes, may facilitate charge transfer and enhance the desorption of NH<sub>3</sub> during the high-temperature decomposition stage of AP. This study highlights the importance of experimental and theoretical analysis, providing a fresh perspective for the development of complexes in the field of energetic materials.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"348 ","pages":"Article 125376"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal decomposition catalytic properties of ammonium perchlorate with three new energetic complexes on the basis of metal centre regulation\",\"authors\":\"Shoufeng Fu,&nbsp;Jiawei Liang,&nbsp;Bing Li,&nbsp;Yanhong Yang,&nbsp;Chenxi Yang,&nbsp;Hongyan Wu,&nbsp;Jiaxing He,&nbsp;Jiayan Guo,&nbsp;Chenghao Wang,&nbsp;Xiaoyan Chen,&nbsp;Jianlin Ren\",\"doi\":\"10.1016/j.jssc.2025.125376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the diverse structural configurations and exceptional thermal stability, energetic complexes have been extensively utilized as catalysts for the thermal decomposition of ammonium perchlorate (AP). Nevertheless, enhancing the catalytic activity of these energetic complexes remains a significant challenge. In this study, three nitrogen-rich heterocyclic complexes, M(Hapza)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> (M = Co, Zn, and Cd), were successfully synthesized by the hydrothermal method using 3-aminopyrazole-4-carboxylic acid (H<sub>2</sub>apza) as an energetic ligand. Single-crystal X-ray diffraction analysis revealed that the three complexes are single-nucleated and isomorphic, forming thermally stable three-dimensional supramolecular structures through extensive hydrogen bonding networks. The incorporation of these complexes significantly advanced the high decomposition peak of AP by 26.9–51.4 °C and reduced the activation energy (<em>E</em><sub>a</sub>) by 41.19–52.99 kJ mol<sup>−1</sup>, demonstrating their remarkable catalytic effect on AP. The detonation properties of the complexes were evaluated using the <em>Kamlet-Jacobs</em> equation, revealing that these complexes possess higher detonation velocities (8.9–9.4 km s<sup>−1</sup>) and detonation pressures (36.1–42.4 GPa) compared to traditional energetic materials. Further investigation into the possible catalytic mechanism suggested that metal oxides, generated from the decomposition of metal complexes, may facilitate charge transfer and enhance the desorption of NH<sub>3</sub> during the high-temperature decomposition stage of AP. This study highlights the importance of experimental and theoretical analysis, providing a fresh perspective for the development of complexes in the field of energetic materials.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"348 \",\"pages\":\"Article 125376\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459625001999\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001999","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

由于其多样的结构构型和优异的热稳定性,高能配合物被广泛用作高氯酸铵(AP)热分解的催化剂。然而,提高这些高能配合物的催化活性仍然是一个重大的挑战。本研究以3-氨基吡唑-4-羧酸(H2apza)为能配体,通过水热法成功合成了3个富氮杂环配合物M(Hapza)2(H2O)4 (M = Co, Zn, and Cd)。单晶x射线衍射分析表明,这三种配合物均为单核同构,通过广泛的氢键网络形成热稳定的三维超分子结构。与传统含能材料相比,这些配合物具有更高的爆轰速度(8.9 ~ 9.4 km s−1)和爆轰压力(36.1 ~ 42.4 GPa),使AP的高分解峰提前了26.9 ~ 51.4℃,活化能降低了41.19 ~ 52.99 kJ mol−1,显示了它们对AP的显著催化作用。对其可能的催化机理的进一步研究表明,金属配合物分解产生的金属氧化物可能促进AP高温分解阶段的电荷转移和NH3的解吸。该研究突出了实验和理论分析的重要性,为配合物在含能材料领域的发展提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal decomposition catalytic properties of ammonium perchlorate with three new energetic complexes on the basis of metal centre regulation

Thermal decomposition catalytic properties of ammonium perchlorate with three new energetic complexes on the basis of metal centre regulation
Due to the diverse structural configurations and exceptional thermal stability, energetic complexes have been extensively utilized as catalysts for the thermal decomposition of ammonium perchlorate (AP). Nevertheless, enhancing the catalytic activity of these energetic complexes remains a significant challenge. In this study, three nitrogen-rich heterocyclic complexes, M(Hapza)2(H2O)4 (M = Co, Zn, and Cd), were successfully synthesized by the hydrothermal method using 3-aminopyrazole-4-carboxylic acid (H2apza) as an energetic ligand. Single-crystal X-ray diffraction analysis revealed that the three complexes are single-nucleated and isomorphic, forming thermally stable three-dimensional supramolecular structures through extensive hydrogen bonding networks. The incorporation of these complexes significantly advanced the high decomposition peak of AP by 26.9–51.4 °C and reduced the activation energy (Ea) by 41.19–52.99 kJ mol−1, demonstrating their remarkable catalytic effect on AP. The detonation properties of the complexes were evaluated using the Kamlet-Jacobs equation, revealing that these complexes possess higher detonation velocities (8.9–9.4 km s−1) and detonation pressures (36.1–42.4 GPa) compared to traditional energetic materials. Further investigation into the possible catalytic mechanism suggested that metal oxides, generated from the decomposition of metal complexes, may facilitate charge transfer and enhance the desorption of NH3 during the high-temperature decomposition stage of AP. This study highlights the importance of experimental and theoretical analysis, providing a fresh perspective for the development of complexes in the field of energetic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信