高熵RETaO4 (RE = Y, Gd, Yb, Dy, Sm)陶瓷的力学性能增强及增韧机理

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Qian Wen , Xiaopeng Hu , Junyao Wu , Qing Liu , Sai Liu , Duzhong Zhu , Jinwei Guo , Wang Zhu
{"title":"高熵RETaO4 (RE = Y, Gd, Yb, Dy, Sm)陶瓷的力学性能增强及增韧机理","authors":"Qian Wen ,&nbsp;Xiaopeng Hu ,&nbsp;Junyao Wu ,&nbsp;Qing Liu ,&nbsp;Sai Liu ,&nbsp;Duzhong Zhu ,&nbsp;Jinwei Guo ,&nbsp;Wang Zhu","doi":"10.1016/j.matchar.2025.115025","DOIUrl":null,"url":null,"abstract":"<div><div>Medium-high entropy RETaO<sub>4</sub> (RE = Y, Gd, Yb, Dy, Sm) ceramics are prepared by high-temperature solid-state reaction. Results show that doping rare earth ions into the A site improves the hardness, elastic modulus, fracture toughness, and fracture strength of the ceramics. As the solid solution components increase, hardness rises from 5.19 GPa to 7.43 GPa, elastic modulus from 55.2 GPa to 88.8 GPa, fracture toughness from 1.10 MPa·m<sup>1/2</sup> to 2.05 MPa·m<sup>1/2</sup>, and fracture strength from 31.8 MPa to 58.6 MPa. This enhancement is attributed to higher lattice distortion, increased internal energy, and stronger bonding. The proportion of transgranular fracture increases with solid solution content. Ferroelastic domain structures cause crack tip deflection, leading to greater fracture energy absorption. Furthermore, high-entropy and lattice distortion effects in (5RE<sub>1/5</sub>)TaO<sub>4</sub> ceramics promote high-density dislocation regions under stress, enhancing dislocation toughening.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"224 ","pages":"Article 115025"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of mechanical properties and toughening mechanisms in high-entropy RETaO4 (RE = Y, Gd, Yb, Dy, Sm) ceramics\",\"authors\":\"Qian Wen ,&nbsp;Xiaopeng Hu ,&nbsp;Junyao Wu ,&nbsp;Qing Liu ,&nbsp;Sai Liu ,&nbsp;Duzhong Zhu ,&nbsp;Jinwei Guo ,&nbsp;Wang Zhu\",\"doi\":\"10.1016/j.matchar.2025.115025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medium-high entropy RETaO<sub>4</sub> (RE = Y, Gd, Yb, Dy, Sm) ceramics are prepared by high-temperature solid-state reaction. Results show that doping rare earth ions into the A site improves the hardness, elastic modulus, fracture toughness, and fracture strength of the ceramics. As the solid solution components increase, hardness rises from 5.19 GPa to 7.43 GPa, elastic modulus from 55.2 GPa to 88.8 GPa, fracture toughness from 1.10 MPa·m<sup>1/2</sup> to 2.05 MPa·m<sup>1/2</sup>, and fracture strength from 31.8 MPa to 58.6 MPa. This enhancement is attributed to higher lattice distortion, increased internal energy, and stronger bonding. The proportion of transgranular fracture increases with solid solution content. Ferroelastic domain structures cause crack tip deflection, leading to greater fracture energy absorption. Furthermore, high-entropy and lattice distortion effects in (5RE<sub>1/5</sub>)TaO<sub>4</sub> ceramics promote high-density dislocation regions under stress, enhancing dislocation toughening.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"224 \",\"pages\":\"Article 115025\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325003146\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325003146","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

采用高温固相反应法制备中高熵RETaO4 (RE = Y, Gd, Yb, Dy, Sm)陶瓷。结果表明,稀土离子在A位的掺入提高了陶瓷的硬度、弹性模量、断裂韧性和断裂强度。随着固溶体组分的增加,硬度从5.19 GPa增加到7.43 GPa,弹性模量从55.2 GPa增加到88.8 GPa,断裂韧性从1.10 MPa·m1/2增加到2.05 MPa·m1/2,断裂强度从31.8 MPa增加到58.6 MPa。这种增强是由于更高的晶格畸变、增加的内能和更强的键合。穿晶断裂比例随着固溶体含量的增加而增加。铁弹性畴结构导致裂纹尖端偏转,导致更大的断裂能吸收。此外,(5RE1/5)陶4陶瓷中的高熵效应和晶格畸变效应在应力作用下促进了高密度位错区,增强了位错的韧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of mechanical properties and toughening mechanisms in high-entropy RETaO4 (RE = Y, Gd, Yb, Dy, Sm) ceramics
Medium-high entropy RETaO4 (RE = Y, Gd, Yb, Dy, Sm) ceramics are prepared by high-temperature solid-state reaction. Results show that doping rare earth ions into the A site improves the hardness, elastic modulus, fracture toughness, and fracture strength of the ceramics. As the solid solution components increase, hardness rises from 5.19 GPa to 7.43 GPa, elastic modulus from 55.2 GPa to 88.8 GPa, fracture toughness from 1.10 MPa·m1/2 to 2.05 MPa·m1/2, and fracture strength from 31.8 MPa to 58.6 MPa. This enhancement is attributed to higher lattice distortion, increased internal energy, and stronger bonding. The proportion of transgranular fracture increases with solid solution content. Ferroelastic domain structures cause crack tip deflection, leading to greater fracture energy absorption. Furthermore, high-entropy and lattice distortion effects in (5RE1/5)TaO4 ceramics promote high-density dislocation regions under stress, enhancing dislocation toughening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信