泊松去噪的联合群稀疏编码和加权核范数

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Jianguang Zhu , Wen Gao , Ying Wei , Binbin Hao
{"title":"泊松去噪的联合群稀疏编码和加权核范数","authors":"Jianguang Zhu ,&nbsp;Wen Gao ,&nbsp;Ying Wei ,&nbsp;Binbin Hao","doi":"10.1016/j.cam.2025.116695","DOIUrl":null,"url":null,"abstract":"<div><div>It is difficult to remove Poisson noise because of its multiplicative and signal-dependent nature. In this paper, a new Poisson denoising model based on nonlocal self-similarity is introduced. It combines the weighted nuclear norm and group sparse coding as a regularization term, and makes full use of the low rank and sparse properties of similar image patches. Numerically, incorporating singular value decomposition and the variable splitting method, an alternating minimization method with an adaptive parameter selection strategy is proposed to resolve the new denoising model. Extensive experiments indicate that the proposed model outperforms the existing state-of-the-art Poisson denoising methods.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"470 ","pages":"Article 116695"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint group sparse coding and weighted nuclear norm for Poisson denoising\",\"authors\":\"Jianguang Zhu ,&nbsp;Wen Gao ,&nbsp;Ying Wei ,&nbsp;Binbin Hao\",\"doi\":\"10.1016/j.cam.2025.116695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is difficult to remove Poisson noise because of its multiplicative and signal-dependent nature. In this paper, a new Poisson denoising model based on nonlocal self-similarity is introduced. It combines the weighted nuclear norm and group sparse coding as a regularization term, and makes full use of the low rank and sparse properties of similar image patches. Numerically, incorporating singular value decomposition and the variable splitting method, an alternating minimization method with an adaptive parameter selection strategy is proposed to resolve the new denoising model. Extensive experiments indicate that the proposed model outperforms the existing state-of-the-art Poisson denoising methods.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 116695\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725002092\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725002092","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

泊松噪声具有乘性和信号依赖性,很难去除。本文提出了一种新的基于非局部自相似度的泊松去噪模型。该算法将加权核范数和分组稀疏编码作为正则化项,充分利用相似图像块的低秩和稀疏特性。在数值上,结合奇异值分解和变量分裂方法,提出了一种具有自适应参数选择策略的交替最小化方法来求解新的去噪模型。大量的实验表明,该模型优于现有的最先进的泊松去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint group sparse coding and weighted nuclear norm for Poisson denoising
It is difficult to remove Poisson noise because of its multiplicative and signal-dependent nature. In this paper, a new Poisson denoising model based on nonlocal self-similarity is introduced. It combines the weighted nuclear norm and group sparse coding as a regularization term, and makes full use of the low rank and sparse properties of similar image patches. Numerically, incorporating singular value decomposition and the variable splitting method, an alternating minimization method with an adaptive parameter selection strategy is proposed to resolve the new denoising model. Extensive experiments indicate that the proposed model outperforms the existing state-of-the-art Poisson denoising methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信