基于多变量非对称重尾分布和跨越式HMC算法的纵向分位数回归模型

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Maryam Sabetrasekh, Iraj Kazemi
{"title":"基于多变量非对称重尾分布和跨越式HMC算法的纵向分位数回归模型","authors":"Maryam Sabetrasekh,&nbsp;Iraj Kazemi","doi":"10.1016/j.cam.2025.116690","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling longitudinal quantile regression in a multivariate framework poses particular computational and conceptual challenges due to the inherent complexity of multivariate dependencies. While univariate quantile-based models can be extended to higher dimensions via Gram-Schmidt orthogonalization, such extensions often have practical limitations. To address these challenges, this paper introduces a flexible family of multivariate asymmetric distributions using the probabilistic Rosenblatt transformation. This framework preserves conditional coherence across longitudinal quantile processes via a sequential likelihood factorization, provides an explicit characterization of quantiles shaped by distributional asymmetry and covariate effects, controls for the influence of outliers, and improves computational efficiency in the estimation process. For Bayesian inference, we implement a leapfrog Hamiltonian Monte Carlo algorithm with the No-U-Turn Sampler to estimate longitudinal quantile-based regression parameters. Simulation studies over various quantile levels demonstrate the method’s theoretical properties, while two empirical applications highlight its practical utility and superior performance.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"470 ","pages":"Article 116690"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal quantile-based regression models using multivariate asymmetric heavy-tailed distributions and leapfrog HMC algorithm\",\"authors\":\"Maryam Sabetrasekh,&nbsp;Iraj Kazemi\",\"doi\":\"10.1016/j.cam.2025.116690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modeling longitudinal quantile regression in a multivariate framework poses particular computational and conceptual challenges due to the inherent complexity of multivariate dependencies. While univariate quantile-based models can be extended to higher dimensions via Gram-Schmidt orthogonalization, such extensions often have practical limitations. To address these challenges, this paper introduces a flexible family of multivariate asymmetric distributions using the probabilistic Rosenblatt transformation. This framework preserves conditional coherence across longitudinal quantile processes via a sequential likelihood factorization, provides an explicit characterization of quantiles shaped by distributional asymmetry and covariate effects, controls for the influence of outliers, and improves computational efficiency in the estimation process. For Bayesian inference, we implement a leapfrog Hamiltonian Monte Carlo algorithm with the No-U-Turn Sampler to estimate longitudinal quantile-based regression parameters. Simulation studies over various quantile levels demonstrate the method’s theoretical properties, while two empirical applications highlight its practical utility and superior performance.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 116690\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725002043\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725002043","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于多变量依赖关系固有的复杂性,在多变量框架中建模纵向分位数回归提出了特殊的计算和概念挑战。虽然基于单变量分位数的模型可以通过Gram-Schmidt正交扩展到更高的维度,但这种扩展通常具有实际的局限性。为了解决这些问题,本文利用概率Rosenblatt变换引入了一组灵活的多元非对称分布。该框架通过顺序似然分解保持纵向分位数过程的条件一致性,提供了由分布不对称和协变量效应形成的分位数的明确表征,控制了异常值的影响,并提高了估计过程中的计算效率。对于贝叶斯推理,我们实现了一个带有No-U-Turn采样器的跨越式哈密顿蒙特卡罗算法来估计基于纵向分位数的回归参数。在不同分位数水平上的仿真研究证明了该方法的理论特性,而两个经验应用则突出了其实际效用和优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal quantile-based regression models using multivariate asymmetric heavy-tailed distributions and leapfrog HMC algorithm
Modeling longitudinal quantile regression in a multivariate framework poses particular computational and conceptual challenges due to the inherent complexity of multivariate dependencies. While univariate quantile-based models can be extended to higher dimensions via Gram-Schmidt orthogonalization, such extensions often have practical limitations. To address these challenges, this paper introduces a flexible family of multivariate asymmetric distributions using the probabilistic Rosenblatt transformation. This framework preserves conditional coherence across longitudinal quantile processes via a sequential likelihood factorization, provides an explicit characterization of quantiles shaped by distributional asymmetry and covariate effects, controls for the influence of outliers, and improves computational efficiency in the estimation process. For Bayesian inference, we implement a leapfrog Hamiltonian Monte Carlo algorithm with the No-U-Turn Sampler to estimate longitudinal quantile-based regression parameters. Simulation studies over various quantile levels demonstrate the method’s theoretical properties, while two empirical applications highlight its practical utility and superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信