Mingkang Zhang , Yazhi Wang , Yan Zhou , Xiujuan Wang , Xin’an Wu
{"title":"急性肾损伤中的microrna","authors":"Mingkang Zhang , Yazhi Wang , Yan Zhou , Xiujuan Wang , Xin’an Wu","doi":"10.1016/j.cca.2025.120301","DOIUrl":null,"url":null,"abstract":"<div><div>Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality. AKI has emerged as a significant global public health issue, particularly among hospitalized patients, with the highest incidence observed in those admitted to intensive care units (ICUs). However, early diagnosis of AKI remains challenging due to the limited sensitivity and specificity of conventional biomarkers, including serum creatinine and urine output. Recently, microRNAs (miRNAs) have garnered increasing interest for their potential in the early detection and management of AKI. Owing to their high stability, ease of quantification, well-characterized regulatory functions, and close association with key pathophysiological processes, miRNAs are considered promising diagnostic and therapeutic candidates. Nevertheless, the clinical utility of miRNAs remains limited by confounding factors such as co-infections, comorbidities, and medication use, which may lead to false-positive results. Challenges also persist regarding off-target effects and developing safe and efficient delivery systems. Furthermore, only a few studies have systematically characterized miRNA expression profiles in AKI, considering its heterogeneous etiologies and the dynamic nature of miRNA regulation. Interactions between miRNAs and between miRNAs and non-coding RNAs such as circular (circRNAs) and long non-coding RNAs (lncRNAs) warrant further investigation.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"574 ","pages":"Article 120301"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNAs in acute kidney injury\",\"authors\":\"Mingkang Zhang , Yazhi Wang , Yan Zhou , Xiujuan Wang , Xin’an Wu\",\"doi\":\"10.1016/j.cca.2025.120301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality. AKI has emerged as a significant global public health issue, particularly among hospitalized patients, with the highest incidence observed in those admitted to intensive care units (ICUs). However, early diagnosis of AKI remains challenging due to the limited sensitivity and specificity of conventional biomarkers, including serum creatinine and urine output. Recently, microRNAs (miRNAs) have garnered increasing interest for their potential in the early detection and management of AKI. Owing to their high stability, ease of quantification, well-characterized regulatory functions, and close association with key pathophysiological processes, miRNAs are considered promising diagnostic and therapeutic candidates. Nevertheless, the clinical utility of miRNAs remains limited by confounding factors such as co-infections, comorbidities, and medication use, which may lead to false-positive results. Challenges also persist regarding off-target effects and developing safe and efficient delivery systems. Furthermore, only a few studies have systematically characterized miRNA expression profiles in AKI, considering its heterogeneous etiologies and the dynamic nature of miRNA regulation. Interactions between miRNAs and between miRNAs and non-coding RNAs such as circular (circRNAs) and long non-coding RNAs (lncRNAs) warrant further investigation.</div></div>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":\"574 \",\"pages\":\"Article 120301\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009898125001809\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898125001809","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality. AKI has emerged as a significant global public health issue, particularly among hospitalized patients, with the highest incidence observed in those admitted to intensive care units (ICUs). However, early diagnosis of AKI remains challenging due to the limited sensitivity and specificity of conventional biomarkers, including serum creatinine and urine output. Recently, microRNAs (miRNAs) have garnered increasing interest for their potential in the early detection and management of AKI. Owing to their high stability, ease of quantification, well-characterized regulatory functions, and close association with key pathophysiological processes, miRNAs are considered promising diagnostic and therapeutic candidates. Nevertheless, the clinical utility of miRNAs remains limited by confounding factors such as co-infections, comorbidities, and medication use, which may lead to false-positive results. Challenges also persist regarding off-target effects and developing safe and efficient delivery systems. Furthermore, only a few studies have systematically characterized miRNA expression profiles in AKI, considering its heterogeneous etiologies and the dynamic nature of miRNA regulation. Interactions between miRNAs and between miRNAs and non-coding RNAs such as circular (circRNAs) and long non-coding RNAs (lncRNAs) warrant further investigation.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.