Lukas Roell , Stephan Wunderlich , David Roell , Florian Raabe , Elias Wagner , Zhuanghua Shi , Andrea Schmitt , Peter Falkai , Sophia Stoecklein , Daniel Keeser
{"title":"如何使用静息状态fMRI测量功能连接?对不同连接指标的全面实证探索","authors":"Lukas Roell , Stephan Wunderlich , David Roell , Florian Raabe , Elias Wagner , Zhuanghua Shi , Andrea Schmitt , Peter Falkai , Sophia Stoecklein , Daniel Keeser","doi":"10.1016/j.neuroimage.2025.121195","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Functional connectivity in the context of functional magnetic resonance imaging is typically quantified by Pearson´s or partial correlation between regional time series of the blood oxygenation level dependent signal. However, a recent interdisciplinary methodological work proposes >230 different metrics to measure similarity between different types of time series.</div></div><div><h3>Objective</h3><div>Hence, we systematically evaluated how the results of typical research approaches in functional neuroimaging vary depending on the functional connectivity metric of choice. We further explored which metrics most accurately detect presumed reductions in connectivity related to age and malignant brain tumors, aiming to initiate a debate on the best approaches for assessing brain connectivity in functional neuroimaging research.</div></div><div><h3>Methods</h3><div>We addressed both research questions using four independent neuroimaging datasets, comprising multimodal data from a total of 1187 individuals. We analyzed resting-state functional sequences to calculate functional connectivity using 20 representative metrics from four distinct mathematical domains. We further used T1- and T2-weighted images to compute regional brain volumes, diffusion-weighted imaging data to build structural connectomes, and pseudo-continuous arterial spin labeling to measure regional brain perfusion.</div></div><div><h3>Results</h3><div>First, our findings demonstrate that the results of typical functional neuroimaging approaches differ fundamentally depending on the functional connectivity metric of choice. Second, we show that correlational and distance metrics are most appropriate to cover reductions in connectivity linked to aging. In this context, partial correlation performs worse than other correlational metrics. Third, our findings suggest that the FC metric of choice depends on the utilized scanning parameters, the regions of interest, and the individual investigated. Lastly, beyond the major objective of this study, we provide evidence in favor of brain perfusion measured via pseudo-continuous arterial spin labeling as a robust neural entity mirroring age-related neural and cognitive decline.</div></div><div><h3>Conclusion</h3><div>Our empirical evaluation supports a recent theoretical functional connectivity framework. Future functional imaging studies need to comprehensively define the study-specific theoretical property of interest, the methodological property to assess the theoretical property, and the confounding property that may bias the conclusions.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"312 ","pages":"Article 121195"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to measure functional connectivity using resting-state fMRI? A comprehensive empirical exploration of different connectivity metrics\",\"authors\":\"Lukas Roell , Stephan Wunderlich , David Roell , Florian Raabe , Elias Wagner , Zhuanghua Shi , Andrea Schmitt , Peter Falkai , Sophia Stoecklein , Daniel Keeser\",\"doi\":\"10.1016/j.neuroimage.2025.121195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Functional connectivity in the context of functional magnetic resonance imaging is typically quantified by Pearson´s or partial correlation between regional time series of the blood oxygenation level dependent signal. However, a recent interdisciplinary methodological work proposes >230 different metrics to measure similarity between different types of time series.</div></div><div><h3>Objective</h3><div>Hence, we systematically evaluated how the results of typical research approaches in functional neuroimaging vary depending on the functional connectivity metric of choice. We further explored which metrics most accurately detect presumed reductions in connectivity related to age and malignant brain tumors, aiming to initiate a debate on the best approaches for assessing brain connectivity in functional neuroimaging research.</div></div><div><h3>Methods</h3><div>We addressed both research questions using four independent neuroimaging datasets, comprising multimodal data from a total of 1187 individuals. We analyzed resting-state functional sequences to calculate functional connectivity using 20 representative metrics from four distinct mathematical domains. We further used T1- and T2-weighted images to compute regional brain volumes, diffusion-weighted imaging data to build structural connectomes, and pseudo-continuous arterial spin labeling to measure regional brain perfusion.</div></div><div><h3>Results</h3><div>First, our findings demonstrate that the results of typical functional neuroimaging approaches differ fundamentally depending on the functional connectivity metric of choice. Second, we show that correlational and distance metrics are most appropriate to cover reductions in connectivity linked to aging. In this context, partial correlation performs worse than other correlational metrics. Third, our findings suggest that the FC metric of choice depends on the utilized scanning parameters, the regions of interest, and the individual investigated. Lastly, beyond the major objective of this study, we provide evidence in favor of brain perfusion measured via pseudo-continuous arterial spin labeling as a robust neural entity mirroring age-related neural and cognitive decline.</div></div><div><h3>Conclusion</h3><div>Our empirical evaluation supports a recent theoretical functional connectivity framework. Future functional imaging studies need to comprehensively define the study-specific theoretical property of interest, the methodological property to assess the theoretical property, and the confounding property that may bias the conclusions.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"312 \",\"pages\":\"Article 121195\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925001983\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001983","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
How to measure functional connectivity using resting-state fMRI? A comprehensive empirical exploration of different connectivity metrics
Background
Functional connectivity in the context of functional magnetic resonance imaging is typically quantified by Pearson´s or partial correlation between regional time series of the blood oxygenation level dependent signal. However, a recent interdisciplinary methodological work proposes >230 different metrics to measure similarity between different types of time series.
Objective
Hence, we systematically evaluated how the results of typical research approaches in functional neuroimaging vary depending on the functional connectivity metric of choice. We further explored which metrics most accurately detect presumed reductions in connectivity related to age and malignant brain tumors, aiming to initiate a debate on the best approaches for assessing brain connectivity in functional neuroimaging research.
Methods
We addressed both research questions using four independent neuroimaging datasets, comprising multimodal data from a total of 1187 individuals. We analyzed resting-state functional sequences to calculate functional connectivity using 20 representative metrics from four distinct mathematical domains. We further used T1- and T2-weighted images to compute regional brain volumes, diffusion-weighted imaging data to build structural connectomes, and pseudo-continuous arterial spin labeling to measure regional brain perfusion.
Results
First, our findings demonstrate that the results of typical functional neuroimaging approaches differ fundamentally depending on the functional connectivity metric of choice. Second, we show that correlational and distance metrics are most appropriate to cover reductions in connectivity linked to aging. In this context, partial correlation performs worse than other correlational metrics. Third, our findings suggest that the FC metric of choice depends on the utilized scanning parameters, the regions of interest, and the individual investigated. Lastly, beyond the major objective of this study, we provide evidence in favor of brain perfusion measured via pseudo-continuous arterial spin labeling as a robust neural entity mirroring age-related neural and cognitive decline.
Conclusion
Our empirical evaluation supports a recent theoretical functional connectivity framework. Future functional imaging studies need to comprehensively define the study-specific theoretical property of interest, the methodological property to assess the theoretical property, and the confounding property that may bias the conclusions.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.