Dat Minh Lu , Phong Van Dong , Hien Bui Thu Hoang , Dang Ngoc Tran , Khiem Tran Dang , Linh Thanh Duy Tran , An Le Pham
{"title":"为中低收入国家的生物医学教育提供经济实惠的多色3D打印解决方案","authors":"Dat Minh Lu , Phong Van Dong , Hien Bui Thu Hoang , Dang Ngoc Tran , Khiem Tran Dang , Linh Thanh Duy Tran , An Le Pham","doi":"10.1016/j.stlm.2025.100201","DOIUrl":null,"url":null,"abstract":"<div><div>3D printing for biomedical education in universities remains largely inaccessible in low- and middle-income countries (LMICs) due to the high cost of commercial material jetting and powder bed fusion 3D printers. To address this barrier, we have developed an affordable multicolor fused deposition modeling (FDM) 3D printer capable of producing biomedical models with intricate geometries. The key innovation of our printer is the novel integration of two distinct hybrid printhead configurations to enable simultaneous multicolor printing and water-soluble support material deposition. Positioned along the same X-axis, the first printhead employs a filament cutting, retracting, and purging mechanism to print in seven colors, while the second printhead is dedicated to printing water-soluble support material. The printer utilizes a hybrid CoreXY kinematic system and offers a 30 × 30 × 30 cm print volume. Its operations are controlled by two MKS Monster8 V2.0 boards and an MKS Pi V1.1 running Klipper firmware, with Orca Slicer software converting 3D model data into printer-readable instructions. Our printer successfully operated for up to 45 h, producing four detailed heart models (18 × 15 × 10 cm) and a multicolor DNA polymerase model from online databases and CT scan images. Support structures were removed by immersing the prints in warm water for 24 h, ensuring precise structural integrity for complex models. By combining multicolor printing with water-soluble support material, our cost-effective, frugal innovation allows the fabrication of intricate, vibrant biomedical models, making 3D printing more feasible for biomedical education and research in LMICs.</div></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"18 ","pages":"Article 100201"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affordable multicolor 3D printing solution for biomedical education in low- and middle-income countries\",\"authors\":\"Dat Minh Lu , Phong Van Dong , Hien Bui Thu Hoang , Dang Ngoc Tran , Khiem Tran Dang , Linh Thanh Duy Tran , An Le Pham\",\"doi\":\"10.1016/j.stlm.2025.100201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D printing for biomedical education in universities remains largely inaccessible in low- and middle-income countries (LMICs) due to the high cost of commercial material jetting and powder bed fusion 3D printers. To address this barrier, we have developed an affordable multicolor fused deposition modeling (FDM) 3D printer capable of producing biomedical models with intricate geometries. The key innovation of our printer is the novel integration of two distinct hybrid printhead configurations to enable simultaneous multicolor printing and water-soluble support material deposition. Positioned along the same X-axis, the first printhead employs a filament cutting, retracting, and purging mechanism to print in seven colors, while the second printhead is dedicated to printing water-soluble support material. The printer utilizes a hybrid CoreXY kinematic system and offers a 30 × 30 × 30 cm print volume. Its operations are controlled by two MKS Monster8 V2.0 boards and an MKS Pi V1.1 running Klipper firmware, with Orca Slicer software converting 3D model data into printer-readable instructions. Our printer successfully operated for up to 45 h, producing four detailed heart models (18 × 15 × 10 cm) and a multicolor DNA polymerase model from online databases and CT scan images. Support structures were removed by immersing the prints in warm water for 24 h, ensuring precise structural integrity for complex models. By combining multicolor printing with water-soluble support material, our cost-effective, frugal innovation allows the fabrication of intricate, vibrant biomedical models, making 3D printing more feasible for biomedical education and research in LMICs.</div></div>\",\"PeriodicalId\":72210,\"journal\":{\"name\":\"Annals of 3D printed medicine\",\"volume\":\"18 \",\"pages\":\"Article 100201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of 3D printed medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666964125000165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964125000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Affordable multicolor 3D printing solution for biomedical education in low- and middle-income countries
3D printing for biomedical education in universities remains largely inaccessible in low- and middle-income countries (LMICs) due to the high cost of commercial material jetting and powder bed fusion 3D printers. To address this barrier, we have developed an affordable multicolor fused deposition modeling (FDM) 3D printer capable of producing biomedical models with intricate geometries. The key innovation of our printer is the novel integration of two distinct hybrid printhead configurations to enable simultaneous multicolor printing and water-soluble support material deposition. Positioned along the same X-axis, the first printhead employs a filament cutting, retracting, and purging mechanism to print in seven colors, while the second printhead is dedicated to printing water-soluble support material. The printer utilizes a hybrid CoreXY kinematic system and offers a 30 × 30 × 30 cm print volume. Its operations are controlled by two MKS Monster8 V2.0 boards and an MKS Pi V1.1 running Klipper firmware, with Orca Slicer software converting 3D model data into printer-readable instructions. Our printer successfully operated for up to 45 h, producing four detailed heart models (18 × 15 × 10 cm) and a multicolor DNA polymerase model from online databases and CT scan images. Support structures were removed by immersing the prints in warm water for 24 h, ensuring precise structural integrity for complex models. By combining multicolor printing with water-soluble support material, our cost-effective, frugal innovation allows the fabrication of intricate, vibrant biomedical models, making 3D printing more feasible for biomedical education and research in LMICs.