Jin-Jin Li , Qi Luo , Yi-Xiang Lin , Zhenhao Xi , Ling Zhao
{"title":"通过理论计算和数值模拟了解自由基开环聚合法合成和降解主干可解构(co)聚合物","authors":"Jin-Jin Li , Qi Luo , Yi-Xiang Lin , Zhenhao Xi , Ling Zhao","doi":"10.1016/j.coche.2025.101131","DOIUrl":null,"url":null,"abstract":"<div><div>Radical ring-opening polymerization (<em>r</em>ROP) has gained widespread attention due to the facile incorporation of cleavable groups (e.g. ester, thioesters) into all-carbon backbone vinyl polymers. The inclusion of a cleavable comonomer makes the vinyl copolymers biodegradable. However, competition between the ring-opening of cyclic monomer and vinyl addition without ring-opening, as well as efficient insertion of cleavable comonomer into the backbone, are challenging for <em>r</em>ROP. This minireview discusses the latest developments in theoretical and numerical simulations of <em>r</em>ROP, offering deep insights into both polymerization and degradation processes, including mechanistic identification, kinetic features, and chain microstructure tuning. Besides, challenges and future directions are included to attract more efforts to better perform <em>r</em>ROP and deconstruction process.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101131"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding synthesis and degradation of backbone deconstructable (co)polymers by radical ring-opening polymerization through theoretical calculation and numerical simulation\",\"authors\":\"Jin-Jin Li , Qi Luo , Yi-Xiang Lin , Zhenhao Xi , Ling Zhao\",\"doi\":\"10.1016/j.coche.2025.101131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Radical ring-opening polymerization (<em>r</em>ROP) has gained widespread attention due to the facile incorporation of cleavable groups (e.g. ester, thioesters) into all-carbon backbone vinyl polymers. The inclusion of a cleavable comonomer makes the vinyl copolymers biodegradable. However, competition between the ring-opening of cyclic monomer and vinyl addition without ring-opening, as well as efficient insertion of cleavable comonomer into the backbone, are challenging for <em>r</em>ROP. This minireview discusses the latest developments in theoretical and numerical simulations of <em>r</em>ROP, offering deep insights into both polymerization and degradation processes, including mechanistic identification, kinetic features, and chain microstructure tuning. Besides, challenges and future directions are included to attract more efforts to better perform <em>r</em>ROP and deconstruction process.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Article 101131\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000425\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Understanding synthesis and degradation of backbone deconstructable (co)polymers by radical ring-opening polymerization through theoretical calculation and numerical simulation
Radical ring-opening polymerization (rROP) has gained widespread attention due to the facile incorporation of cleavable groups (e.g. ester, thioesters) into all-carbon backbone vinyl polymers. The inclusion of a cleavable comonomer makes the vinyl copolymers biodegradable. However, competition between the ring-opening of cyclic monomer and vinyl addition without ring-opening, as well as efficient insertion of cleavable comonomer into the backbone, are challenging for rROP. This minireview discusses the latest developments in theoretical and numerical simulations of rROP, offering deep insights into both polymerization and degradation processes, including mechanistic identification, kinetic features, and chain microstructure tuning. Besides, challenges and future directions are included to attract more efforts to better perform rROP and deconstruction process.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.