基于竞争方式的神经网络协同冗余机械臂动态方案

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ying Kong, Xi Chen, Jiayue Yin
{"title":"基于竞争方式的神经网络协同冗余机械臂动态方案","authors":"Ying Kong,&nbsp;Xi Chen,&nbsp;Jiayue Yin","doi":"10.1016/j.asoc.2025.113115","DOIUrl":null,"url":null,"abstract":"<div><div>Focusing on k-winners-take-all (<span><math><mi>k</mi></math></span>-WTA) strategy, this paper considers competitive kinematic program of multiple redundant manipulators using neighbor-to-neighbor communication topology and proposed a dynamic repetitive motion planning (DRMP). Aided by a distributed neural network solver, a cooperative control law of multiple redundant manipulators is formulated for dynamic task allocation with constraint equations, communication topology among manipulators, singularity avoidance of the winner manipulator and repetitive execution of the given tasks. Theoretical analyses prove the manipulation and feasibility of the proposed DRMP among multiple redundant manipulators. Computational simulations based on PUMA560 manipulators are conducted to verified the efficacy of the proposed DRMP and the underlying neural network.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"176 ","pages":"Article 113115"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic scheme for collaborative redundant manipulators aided with neural networks in a competitive manner\",\"authors\":\"Ying Kong,&nbsp;Xi Chen,&nbsp;Jiayue Yin\",\"doi\":\"10.1016/j.asoc.2025.113115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Focusing on k-winners-take-all (<span><math><mi>k</mi></math></span>-WTA) strategy, this paper considers competitive kinematic program of multiple redundant manipulators using neighbor-to-neighbor communication topology and proposed a dynamic repetitive motion planning (DRMP). Aided by a distributed neural network solver, a cooperative control law of multiple redundant manipulators is formulated for dynamic task allocation with constraint equations, communication topology among manipulators, singularity avoidance of the winner manipulator and repetitive execution of the given tasks. Theoretical analyses prove the manipulation and feasibility of the proposed DRMP among multiple redundant manipulators. Computational simulations based on PUMA560 manipulators are conducted to verified the efficacy of the proposed DRMP and the underlying neural network.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"176 \",\"pages\":\"Article 113115\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625004260\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625004260","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

针对k-赢者通吃(k-WTA)策略,利用邻域通信拓扑考虑多冗余机械手的竞争运动学规划,提出了一种动态重复运动规划(DRMP)方法。利用分布式神经网络求解器,建立了具有约束方程、机器人间通信拓扑、优胜机器人避免奇点和重复执行给定任务的多冗余机器人动态任务分配的协同控制律。理论分析证明了所提出的多冗余机械手间DRMP的可操作性和可行性。基于PUMA560机械手进行了计算仿真,验证了所提出的DRMP和底层神经网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic scheme for collaborative redundant manipulators aided with neural networks in a competitive manner
Focusing on k-winners-take-all (k-WTA) strategy, this paper considers competitive kinematic program of multiple redundant manipulators using neighbor-to-neighbor communication topology and proposed a dynamic repetitive motion planning (DRMP). Aided by a distributed neural network solver, a cooperative control law of multiple redundant manipulators is formulated for dynamic task allocation with constraint equations, communication topology among manipulators, singularity avoidance of the winner manipulator and repetitive execution of the given tasks. Theoretical analyses prove the manipulation and feasibility of the proposed DRMP among multiple redundant manipulators. Computational simulations based on PUMA560 manipulators are conducted to verified the efficacy of the proposed DRMP and the underlying neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信