动态离子释放生物材料积极塑造微环境,以加强愈合

IF 3.6 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Willian Fernando Zambuzzi , Marcel Rodrigues Ferreira
{"title":"动态离子释放生物材料积极塑造微环境,以加强愈合","authors":"Willian Fernando Zambuzzi ,&nbsp;Marcel Rodrigues Ferreira","doi":"10.1016/j.jtemb.2025.127657","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic ion-releasing biomaterials have redefined the role of implantable bone devices, transitioning them from passive mechanical support to active players in tissue regeneration. These materials actively modulate the surrounding biological microenvironment by releasing bioactive ions (e.g.: calcium, phosphate, and cobalt) which dynamically interact with cells and tissues surrounding them. This interaction becomes the microenvironment highly active and accelerates bone healing, promoting osteogenesis, and enhancing osseointegration. The ions modulate key biological processes in this regard, including osteoblast adhesion, proliferation, differentiation, angiogenesis, and immune responses, as well as coupled physiological mechanisms, ensuring that the implanted biomaterials foster an optimal environment for bone regeneration. More advanced surface modifications onto materials (e.g.: nanostructuring hydroxyapatites coatings) have been shown to further boost ion release, amplifying the ability of the material to influence surrounding tissues. As a result, ion-releasing biomaterials not only improve implant integration but also accelerate the overall healing process. Looking forward, the development of smart biomaterials capable of adjusting ion release in response to environmental changes offers exciting possibilities for personalized regenerative therapies and this review provides a comprehensive understanding of how dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing, focusing on their ability to modulate biological processes such as osteogenesis and angiogenesis. By examining the latest advances in surface modifications and ion-release mechanisms, this review also aims to revise the potential of these materials to revolutionize regenerative medicine, offering knowledge to guide the development of next-generation biomaterials for improved clinical outcomes.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"89 ","pages":"Article 127657"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing\",\"authors\":\"Willian Fernando Zambuzzi ,&nbsp;Marcel Rodrigues Ferreira\",\"doi\":\"10.1016/j.jtemb.2025.127657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dynamic ion-releasing biomaterials have redefined the role of implantable bone devices, transitioning them from passive mechanical support to active players in tissue regeneration. These materials actively modulate the surrounding biological microenvironment by releasing bioactive ions (e.g.: calcium, phosphate, and cobalt) which dynamically interact with cells and tissues surrounding them. This interaction becomes the microenvironment highly active and accelerates bone healing, promoting osteogenesis, and enhancing osseointegration. The ions modulate key biological processes in this regard, including osteoblast adhesion, proliferation, differentiation, angiogenesis, and immune responses, as well as coupled physiological mechanisms, ensuring that the implanted biomaterials foster an optimal environment for bone regeneration. More advanced surface modifications onto materials (e.g.: nanostructuring hydroxyapatites coatings) have been shown to further boost ion release, amplifying the ability of the material to influence surrounding tissues. As a result, ion-releasing biomaterials not only improve implant integration but also accelerate the overall healing process. Looking forward, the development of smart biomaterials capable of adjusting ion release in response to environmental changes offers exciting possibilities for personalized regenerative therapies and this review provides a comprehensive understanding of how dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing, focusing on their ability to modulate biological processes such as osteogenesis and angiogenesis. By examining the latest advances in surface modifications and ion-release mechanisms, this review also aims to revise the potential of these materials to revolutionize regenerative medicine, offering knowledge to guide the development of next-generation biomaterials for improved clinical outcomes.</div></div>\",\"PeriodicalId\":49970,\"journal\":{\"name\":\"Journal of Trace Elements in Medicine and Biology\",\"volume\":\"89 \",\"pages\":\"Article 127657\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Trace Elements in Medicine and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0946672X25000707\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X25000707","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动态离子释放生物材料重新定义了植入式骨装置的作用,将它们从被动的机械支持转变为组织再生中的主动参与者。这些材料通过释放生物活性离子(如钙、磷酸盐和钴)来主动调节周围的生物微环境,这些离子与周围的细胞和组织动态相互作用。这种相互作用使微环境变得高度活跃,加速骨愈合,促进成骨,增强骨整合。在这方面,离子调节关键的生物过程,包括成骨细胞粘附、增殖、分化、血管生成和免疫反应,以及耦合的生理机制,确保植入的生物材料为骨再生提供最佳环境。对材料进行更高级的表面修饰(例如:纳米结构羟基磷灰石涂层)已被证明可以进一步促进离子释放,增强材料影响周围组织的能力。因此,离子释放生物材料不仅可以改善种植体的整合,还可以加速整体愈合过程。展望未来,能够根据环境变化调节离子释放的智能生物材料的发展为个性化再生治疗提供了令人兴奋的可能性,本综述提供了对动态离子释放生物材料如何积极塑造微环境以增强愈合的全面理解,重点关注它们调节生物过程(如骨生成和血管生成)的能力。通过研究表面修饰和离子释放机制的最新进展,本综述还旨在修订这些材料的潜力,以彻底改变再生医学,为指导下一代生物材料的开发提供知识,以改善临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing
Dynamic ion-releasing biomaterials have redefined the role of implantable bone devices, transitioning them from passive mechanical support to active players in tissue regeneration. These materials actively modulate the surrounding biological microenvironment by releasing bioactive ions (e.g.: calcium, phosphate, and cobalt) which dynamically interact with cells and tissues surrounding them. This interaction becomes the microenvironment highly active and accelerates bone healing, promoting osteogenesis, and enhancing osseointegration. The ions modulate key biological processes in this regard, including osteoblast adhesion, proliferation, differentiation, angiogenesis, and immune responses, as well as coupled physiological mechanisms, ensuring that the implanted biomaterials foster an optimal environment for bone regeneration. More advanced surface modifications onto materials (e.g.: nanostructuring hydroxyapatites coatings) have been shown to further boost ion release, amplifying the ability of the material to influence surrounding tissues. As a result, ion-releasing biomaterials not only improve implant integration but also accelerate the overall healing process. Looking forward, the development of smart biomaterials capable of adjusting ion release in response to environmental changes offers exciting possibilities for personalized regenerative therapies and this review provides a comprehensive understanding of how dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing, focusing on their ability to modulate biological processes such as osteogenesis and angiogenesis. By examining the latest advances in surface modifications and ion-release mechanisms, this review also aims to revise the potential of these materials to revolutionize regenerative medicine, offering knowledge to guide the development of next-generation biomaterials for improved clinical outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
2.90%
发文量
202
审稿时长
85 days
期刊介绍: The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods. Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信