{"title":"完美润湿状态下具有一般迁移率的薄膜方程的经典解","authors":"Manuel V. Gnann, Anouk C. Wisse","doi":"10.1016/j.jfa.2025.110941","DOIUrl":null,"url":null,"abstract":"<div><div>We prove well-posedness, partial regularity, and stability of the thin-film equation <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><mi>m</mi><mo>(</mo><mi>h</mi><mo>)</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>z</mi><mi>z</mi><mi>z</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> with general mobility <span><math><mi>m</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and mobility exponent <span><math><mi>n</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo><mo>∪</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>)</mo></math></span> in the regime of perfect wetting (zero contact angle). After a suitable coordinate transformation to fix the free boundary (the contact line where liquid, air, and solid coalesce), the thin-film equation is rewritten as an abstract Cauchy problem and we obtain maximal <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-regularity for the linearized evolution. Partial regularity close to the free boundary is obtained by studying the elliptic regularity of the spatial part of the linearization. This yields solutions that are non-smooth in the distance to the free boundary, in line with previous findings for source-type self-similar solutions. In a scaling-wise quasi-minimal norm for the initial data, we obtain a well-posedness and asymptotic stability result for perturbations of traveling waves. The novelty of this work lies in the usage of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates in time, where <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, while the existing literature mostly deals with <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> at least for nonlinear mobilities. This turns out to be essential to obtain for the first time a well-posedness result in the perfect-wetting regime for all physical nonlinear slip conditions except for a strongly degenerate case at <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and the well-understood Greenspan-slip case <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>. Furthermore, compared to <span><span>[36]</span></span> by Giacomelli, the first author of this paper, Knüpfer, and Otto, where a PDE approach yields <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-estimates, well-posedness, and stability for <span><math><mn>1.8384</mn><mo>≈</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>17</mn></mrow></mfrac><mo>(</mo><mn>15</mn><mo>−</mo><msqrt><mrow><mn>21</mn></mrow></msqrt><mo>)</mo><mo><</mo><mi>n</mi><mo><</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>11</mn></mrow></mfrac><mo>(</mo><mn>7</mn><mo>+</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo><mo>≈</mo><mn>2.5189</mn></math></span>, our functional-analytic approach is shorter while at the same time giving a more general result.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 110941"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime\",\"authors\":\"Manuel V. Gnann, Anouk C. Wisse\",\"doi\":\"10.1016/j.jfa.2025.110941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove well-posedness, partial regularity, and stability of the thin-film equation <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><mi>m</mi><mo>(</mo><mi>h</mi><mo>)</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>z</mi><mi>z</mi><mi>z</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> with general mobility <span><math><mi>m</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and mobility exponent <span><math><mi>n</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo><mo>∪</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>)</mo></math></span> in the regime of perfect wetting (zero contact angle). After a suitable coordinate transformation to fix the free boundary (the contact line where liquid, air, and solid coalesce), the thin-film equation is rewritten as an abstract Cauchy problem and we obtain maximal <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-regularity for the linearized evolution. Partial regularity close to the free boundary is obtained by studying the elliptic regularity of the spatial part of the linearization. This yields solutions that are non-smooth in the distance to the free boundary, in line with previous findings for source-type self-similar solutions. In a scaling-wise quasi-minimal norm for the initial data, we obtain a well-posedness and asymptotic stability result for perturbations of traveling waves. The novelty of this work lies in the usage of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates in time, where <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, while the existing literature mostly deals with <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> at least for nonlinear mobilities. This turns out to be essential to obtain for the first time a well-posedness result in the perfect-wetting regime for all physical nonlinear slip conditions except for a strongly degenerate case at <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and the well-understood Greenspan-slip case <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>. Furthermore, compared to <span><span>[36]</span></span> by Giacomelli, the first author of this paper, Knüpfer, and Otto, where a PDE approach yields <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-estimates, well-posedness, and stability for <span><math><mn>1.8384</mn><mo>≈</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>17</mn></mrow></mfrac><mo>(</mo><mn>15</mn><mo>−</mo><msqrt><mrow><mn>21</mn></mrow></msqrt><mo>)</mo><mo><</mo><mi>n</mi><mo><</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>11</mn></mrow></mfrac><mo>(</mo><mn>7</mn><mo>+</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo><mo>≈</mo><mn>2.5189</mn></math></span>, our functional-analytic approach is shorter while at the same time giving a more general result.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 8\",\"pages\":\"Article 110941\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001235\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001235","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime
We prove well-posedness, partial regularity, and stability of the thin-film equation with general mobility and mobility exponent in the regime of perfect wetting (zero contact angle). After a suitable coordinate transformation to fix the free boundary (the contact line where liquid, air, and solid coalesce), the thin-film equation is rewritten as an abstract Cauchy problem and we obtain maximal -regularity for the linearized evolution. Partial regularity close to the free boundary is obtained by studying the elliptic regularity of the spatial part of the linearization. This yields solutions that are non-smooth in the distance to the free boundary, in line with previous findings for source-type self-similar solutions. In a scaling-wise quasi-minimal norm for the initial data, we obtain a well-posedness and asymptotic stability result for perturbations of traveling waves. The novelty of this work lies in the usage of -estimates in time, where , while the existing literature mostly deals with at least for nonlinear mobilities. This turns out to be essential to obtain for the first time a well-posedness result in the perfect-wetting regime for all physical nonlinear slip conditions except for a strongly degenerate case at and the well-understood Greenspan-slip case . Furthermore, compared to [36] by Giacomelli, the first author of this paper, Knüpfer, and Otto, where a PDE approach yields -estimates, well-posedness, and stability for , our functional-analytic approach is shorter while at the same time giving a more general result.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis