利用并行化 Wang-Landau 过渡矩阵蒙特卡洛模拟实现二氧化碳和正烷烃在块体和密闭空间的相平衡

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Jilong Xu, Harold W. Hatch, Vincent K. Shen and Zhehui Jin*, 
{"title":"利用并行化 Wang-Landau 过渡矩阵蒙特卡洛模拟实现二氧化碳和正烷烃在块体和密闭空间的相平衡","authors":"Jilong Xu,&nbsp;Harold W. Hatch,&nbsp;Vincent K. Shen and Zhehui Jin*,&nbsp;","doi":"10.1021/acs.energyfuels.5c0042010.1021/acs.energyfuels.5c00420","DOIUrl":null,"url":null,"abstract":"<p >The accurate and fast simulation of CO<sub>2</sub> and <i>n</i>-alkane phase equilibria is crucial for guiding their industrial applications. We used Wang–Landau Transition-Matrix Monte Carlo (WL-TMMC) with the Free Energy and Advanced Sampling Simulation Toolkit (FEASST) software to compute the vapor–liquid equilibrium (VLE) of CO<sub>2</sub>-methane and CO<sub>2</sub>-hexane systems in both bulk and confined spaces. The bulk-phase simulation results were compared with literature data and constant volume Gibbs Ensemble (NVT-GEMC) results, with relative errors less than 6%. For confined systems, the results were compared with gauge cell grand-canonical Monte Carlo (gauge-GCMC) and pore–pore GEMC, with relative errors less than 8%. Notably, the WL-TMMC exhibits significant advantages in computing VLE for confined spaces. It requires only a single simulation to determine a pair of VLE points without being constrained by prespecified chemical potentials or pore geometry. Furthermore, the method provides free energy information for different fluid states, enabling the construction of a complete van der Waals loop from a single simulation. In conclusion, we demonstrate that WL-TMMC in FEASST is a robust and reliable tool for studying CO<sub>2</sub>-<i>n</i>-alkane VLE.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 15","pages":"7305–7313 7305–7313"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Equilibria of CO2 and n-Alkanes in Bulk and Confined Space Using Parallelized Wang–Landau Transition-Matrix Monte Carlo Simulations\",\"authors\":\"Jilong Xu,&nbsp;Harold W. Hatch,&nbsp;Vincent K. Shen and Zhehui Jin*,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.5c0042010.1021/acs.energyfuels.5c00420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The accurate and fast simulation of CO<sub>2</sub> and <i>n</i>-alkane phase equilibria is crucial for guiding their industrial applications. We used Wang–Landau Transition-Matrix Monte Carlo (WL-TMMC) with the Free Energy and Advanced Sampling Simulation Toolkit (FEASST) software to compute the vapor–liquid equilibrium (VLE) of CO<sub>2</sub>-methane and CO<sub>2</sub>-hexane systems in both bulk and confined spaces. The bulk-phase simulation results were compared with literature data and constant volume Gibbs Ensemble (NVT-GEMC) results, with relative errors less than 6%. For confined systems, the results were compared with gauge cell grand-canonical Monte Carlo (gauge-GCMC) and pore–pore GEMC, with relative errors less than 8%. Notably, the WL-TMMC exhibits significant advantages in computing VLE for confined spaces. It requires only a single simulation to determine a pair of VLE points without being constrained by prespecified chemical potentials or pore geometry. Furthermore, the method provides free energy information for different fluid states, enabling the construction of a complete van der Waals loop from a single simulation. In conclusion, we demonstrate that WL-TMMC in FEASST is a robust and reliable tool for studying CO<sub>2</sub>-<i>n</i>-alkane VLE.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 15\",\"pages\":\"7305–7313 7305–7313\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00420\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00420","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确、快速地模拟二氧化碳和正构烷烃的相平衡对于指导它们的工业应用至关重要。我们使用Wang-Landau过渡矩阵蒙特卡罗(WL-TMMC)和自由能和高级采样模拟工具包(FEASST)软件计算了co2 -甲烷和co2 -己烷体系在体积和密闭空间中的汽液平衡(VLE)。体相模拟结果与文献数据和等体积Gibbs Ensemble (NVT-GEMC)结果进行了比较,相对误差小于6%。对于密闭系统,将结果与gauge cell大规范蒙特卡罗(gauge- gcmc)和pore-pore GEMC进行比较,相对误差小于8%。值得注意的是,WL-TMMC在计算受限空间的VLE方面表现出显著的优势。它只需要一次模拟就可以确定一对VLE点,而不受预先指定的化学势或孔隙几何形状的限制。此外,该方法还提供了不同流体状态的自由能信息,从而可以从一次模拟中构建完整的范德瓦尔斯环。总之,我们证明了在feass中WL-TMMC是一个稳健可靠的研究co2 -正构烷烃VLE的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase Equilibria of CO2 and n-Alkanes in Bulk and Confined Space Using Parallelized Wang–Landau Transition-Matrix Monte Carlo Simulations

Phase Equilibria of CO2 and n-Alkanes in Bulk and Confined Space Using Parallelized Wang–Landau Transition-Matrix Monte Carlo Simulations

The accurate and fast simulation of CO2 and n-alkane phase equilibria is crucial for guiding their industrial applications. We used Wang–Landau Transition-Matrix Monte Carlo (WL-TMMC) with the Free Energy and Advanced Sampling Simulation Toolkit (FEASST) software to compute the vapor–liquid equilibrium (VLE) of CO2-methane and CO2-hexane systems in both bulk and confined spaces. The bulk-phase simulation results were compared with literature data and constant volume Gibbs Ensemble (NVT-GEMC) results, with relative errors less than 6%. For confined systems, the results were compared with gauge cell grand-canonical Monte Carlo (gauge-GCMC) and pore–pore GEMC, with relative errors less than 8%. Notably, the WL-TMMC exhibits significant advantages in computing VLE for confined spaces. It requires only a single simulation to determine a pair of VLE points without being constrained by prespecified chemical potentials or pore geometry. Furthermore, the method provides free energy information for different fluid states, enabling the construction of a complete van der Waals loop from a single simulation. In conclusion, we demonstrate that WL-TMMC in FEASST is a robust and reliable tool for studying CO2-n-alkane VLE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信