Soonjoung Kim, Shintaro Yamada, Tao Li, Claudia Canasto-Chibuque, Jun Hyun Kim, Marina Marcet-Ortega, Jiaqi Xu, Diana Y. Eng, Laura Feeney, John H. J. Petrini, Scott Keeney
{"title":"小鼠MRE11-RAD50-NBS1需要启动和延长减数分裂DNA末端切除","authors":"Soonjoung Kim, Shintaro Yamada, Tao Li, Claudia Canasto-Chibuque, Jun Hyun Kim, Marina Marcet-Ortega, Jiaqi Xu, Diana Y. Eng, Laura Feeney, John H. J. Petrini, Scott Keeney","doi":"10.1038/s41467-025-57928-x","DOIUrl":null,"url":null,"abstract":"<p>Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection during spermatogenesis in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if <i>Mre11</i> is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead <i>Mre11</i> model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection beyond that carried out by the orthologous proteins in budding yeast meiosis. Finally, resection defects are additively worsened by combining MRN and <i>Exo1</i> mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate MRN roles in meiotic DSB end processing and establish the importance of resection for mammalian meiosis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mouse MRE11-RAD50-NBS1 is needed to start and extend meiotic DNA end resection\",\"authors\":\"Soonjoung Kim, Shintaro Yamada, Tao Li, Claudia Canasto-Chibuque, Jun Hyun Kim, Marina Marcet-Ortega, Jiaqi Xu, Diana Y. Eng, Laura Feeney, John H. J. Petrini, Scott Keeney\",\"doi\":\"10.1038/s41467-025-57928-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection during spermatogenesis in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if <i>Mre11</i> is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead <i>Mre11</i> model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection beyond that carried out by the orthologous proteins in budding yeast meiosis. Finally, resection defects are additively worsened by combining MRN and <i>Exo1</i> mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate MRN roles in meiotic DSB end processing and establish the importance of resection for mammalian meiosis.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57928-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57928-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mouse MRE11-RAD50-NBS1 is needed to start and extend meiotic DNA end resection
Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection during spermatogenesis in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if Mre11 is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers. Resection lengths are reduced to varying degrees in MRN hypomorphs or if MRE11 nuclease activity is attenuated in a conditional nuclease-dead Mre11 model. These findings unexpectedly establish that MRN is needed for longer-range extension of resection beyond that carried out by the orthologous proteins in budding yeast meiosis. Finally, resection defects are additively worsened by combining MRN and Exo1 mutations, and mice that are unable to initiate resection or have greatly curtailed resection lengths experience catastrophic spermatogenic failure. Our results elucidate MRN roles in meiotic DSB end processing and establish the importance of resection for mammalian meiosis.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.