Wei Wei, Yiwei Zhang, Mengdi Yu, Di Shen, Xiyu Sun, Mingshi Fu, Chi Zhang, Zhenzhen Jia and Mingzhen Zhang
{"title":"基于糖苷键水解的新型泪液溶菌酶荧光检测策略","authors":"Wei Wei, Yiwei Zhang, Mengdi Yu, Di Shen, Xiyu Sun, Mingshi Fu, Chi Zhang, Zhenzhen Jia and Mingzhen Zhang","doi":"10.1039/D5AN00331H","DOIUrl":null,"url":null,"abstract":"<p >Dry eye disease (DED) is a prevalent condition characterized by a multifaceted etiology, with its incidence exhibiting an upward trajectory. Consequently, it is imperative to develop a sensitive, straightforward, and convenient method for the analysis of biomarkers associated with DED to facilitate its auxiliary diagnosis. Lysozyme (LYZ), produced by the lacrimal gland, is an antibacterial enzyme believed to play a crucial role in immunity and is associated with DED. In this study, a novel fluorescent sensing platform utilizing neutral red-heparin sodium (NR-HS) was developed with LYZ as the target. The platform operates on the principle of static quenching, where HS effectively quenches the fluorescence of NR. As a hydrolase, LYZ can catalyze the hydrolysis of the glucoside bond in HS, thereby modulating the transformation of the NR-HS fluorescence signal. This provides a straightforward fluorescence method for monitoring LYZ levels. Under optimal conditions, the developed “on–off–on” NR-HS sensing platform demonstrated the capability to detect LYZ within a range of 0.5 to 10 μg mL<small><sup>−1</sup></small>, with a detection limit of 0.42 μg mL<small><sup>−1</sup></small>, and exhibited enhanced selectivity for LYZ. In conclusion, a cost-effective, rapid, and efficient LYZ sensing platform was established, which facilitates the diagnosis of DED and shows potential as a diagnostic detection technique.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 11","pages":" 2368-2374"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel fluorescent detection strategy for lysozyme in tears based on glycoside bond hydrolysis†\",\"authors\":\"Wei Wei, Yiwei Zhang, Mengdi Yu, Di Shen, Xiyu Sun, Mingshi Fu, Chi Zhang, Zhenzhen Jia and Mingzhen Zhang\",\"doi\":\"10.1039/D5AN00331H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dry eye disease (DED) is a prevalent condition characterized by a multifaceted etiology, with its incidence exhibiting an upward trajectory. Consequently, it is imperative to develop a sensitive, straightforward, and convenient method for the analysis of biomarkers associated with DED to facilitate its auxiliary diagnosis. Lysozyme (LYZ), produced by the lacrimal gland, is an antibacterial enzyme believed to play a crucial role in immunity and is associated with DED. In this study, a novel fluorescent sensing platform utilizing neutral red-heparin sodium (NR-HS) was developed with LYZ as the target. The platform operates on the principle of static quenching, where HS effectively quenches the fluorescence of NR. As a hydrolase, LYZ can catalyze the hydrolysis of the glucoside bond in HS, thereby modulating the transformation of the NR-HS fluorescence signal. This provides a straightforward fluorescence method for monitoring LYZ levels. Under optimal conditions, the developed “on–off–on” NR-HS sensing platform demonstrated the capability to detect LYZ within a range of 0.5 to 10 μg mL<small><sup>−1</sup></small>, with a detection limit of 0.42 μg mL<small><sup>−1</sup></small>, and exhibited enhanced selectivity for LYZ. In conclusion, a cost-effective, rapid, and efficient LYZ sensing platform was established, which facilitates the diagnosis of DED and shows potential as a diagnostic detection technique.</p>\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":\" 11\",\"pages\":\" 2368-2374\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/an/d5an00331h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/an/d5an00331h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel fluorescent detection strategy for lysozyme in tears based on glycoside bond hydrolysis†
Dry eye disease (DED) is a prevalent condition characterized by a multifaceted etiology, with its incidence exhibiting an upward trajectory. Consequently, it is imperative to develop a sensitive, straightforward, and convenient method for the analysis of biomarkers associated with DED to facilitate its auxiliary diagnosis. Lysozyme (LYZ), produced by the lacrimal gland, is an antibacterial enzyme believed to play a crucial role in immunity and is associated with DED. In this study, a novel fluorescent sensing platform utilizing neutral red-heparin sodium (NR-HS) was developed with LYZ as the target. The platform operates on the principle of static quenching, where HS effectively quenches the fluorescence of NR. As a hydrolase, LYZ can catalyze the hydrolysis of the glucoside bond in HS, thereby modulating the transformation of the NR-HS fluorescence signal. This provides a straightforward fluorescence method for monitoring LYZ levels. Under optimal conditions, the developed “on–off–on” NR-HS sensing platform demonstrated the capability to detect LYZ within a range of 0.5 to 10 μg mL−1, with a detection limit of 0.42 μg mL−1, and exhibited enhanced selectivity for LYZ. In conclusion, a cost-effective, rapid, and efficient LYZ sensing platform was established, which facilitates the diagnosis of DED and shows potential as a diagnostic detection technique.