Xue Shixing , Bu Shengjun , Sun He , Zhang Xinyue , Zhang Xingdong , Zhang Xiaoying , Han Leng , Dai Enyong , Jiayu Wan
{"title":"基于循环延伸等温扩增的LncRNA MALAT1荧光生物传感器","authors":"Xue Shixing , Bu Shengjun , Sun He , Zhang Xinyue , Zhang Xingdong , Zhang Xiaoying , Han Leng , Dai Enyong , Jiayu Wan","doi":"10.1016/j.aca.2025.344076","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Long non-coding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a crucial regulator of gene expression, has emerged as a highly promising biomarker in the progression of various cancers. The clinical detection of lncRNA MALAT1 primarily relies on Reverse Transcription-Polymerase Chain Reaction (RT-PCR), which requires skilled operators and large, expensive thermal cycling equipment. These limitations have restricted the application of RT-PCR, particularly in resource-constrained settings.</div></div><div><h3>Results</h3><div>In this study, we developed a novel signal amplification method, termed Isothermal Amplification by Cyclic Extension (IACE), based on the linear extension of a single-stranded DNA probe. IACE operates through the continuous extension of Probe 1 (a) into long single-stranded DNA with multiple repetitive sequences, facilitated by Probe 2 (a∗a∗) and Bst DNA polymerase. We found that the single-stranded DNA product of IACE could directly activate the CRISPR-Cas12a system without requiring a protospacer adjacent motif (PAM). By integrating IACE with a three-way junction structure and a nicking enzyme, we established a one-step signal amplification strategy for the detection of lncRNA MALAT1, achieving a detection limit as low as 37.5 fM using the CRISPR-Cas system.</div></div><div><h3>Significance</h3><div>The biosensor developed in the present study simplifies workflows, minimizes contamination risks, and demonstrates exceptional detection performance in tumor patient samples, highlighting its potential to advance clinical tumor diagnostic approaches.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1357 ","pages":"Article 344076"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fluorescence biosensor for detecting LncRNA MALAT1 based on isothermal amplification by cyclic extension\",\"authors\":\"Xue Shixing , Bu Shengjun , Sun He , Zhang Xinyue , Zhang Xingdong , Zhang Xiaoying , Han Leng , Dai Enyong , Jiayu Wan\",\"doi\":\"10.1016/j.aca.2025.344076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Long non-coding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a crucial regulator of gene expression, has emerged as a highly promising biomarker in the progression of various cancers. The clinical detection of lncRNA MALAT1 primarily relies on Reverse Transcription-Polymerase Chain Reaction (RT-PCR), which requires skilled operators and large, expensive thermal cycling equipment. These limitations have restricted the application of RT-PCR, particularly in resource-constrained settings.</div></div><div><h3>Results</h3><div>In this study, we developed a novel signal amplification method, termed Isothermal Amplification by Cyclic Extension (IACE), based on the linear extension of a single-stranded DNA probe. IACE operates through the continuous extension of Probe 1 (a) into long single-stranded DNA with multiple repetitive sequences, facilitated by Probe 2 (a∗a∗) and Bst DNA polymerase. We found that the single-stranded DNA product of IACE could directly activate the CRISPR-Cas12a system without requiring a protospacer adjacent motif (PAM). By integrating IACE with a three-way junction structure and a nicking enzyme, we established a one-step signal amplification strategy for the detection of lncRNA MALAT1, achieving a detection limit as low as 37.5 fM using the CRISPR-Cas system.</div></div><div><h3>Significance</h3><div>The biosensor developed in the present study simplifies workflows, minimizes contamination risks, and demonstrates exceptional detection performance in tumor patient samples, highlighting its potential to advance clinical tumor diagnostic approaches.</div></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"1357 \",\"pages\":\"Article 344076\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003267025004702\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025004702","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A fluorescence biosensor for detecting LncRNA MALAT1 based on isothermal amplification by cyclic extension
Background
Long non-coding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a crucial regulator of gene expression, has emerged as a highly promising biomarker in the progression of various cancers. The clinical detection of lncRNA MALAT1 primarily relies on Reverse Transcription-Polymerase Chain Reaction (RT-PCR), which requires skilled operators and large, expensive thermal cycling equipment. These limitations have restricted the application of RT-PCR, particularly in resource-constrained settings.
Results
In this study, we developed a novel signal amplification method, termed Isothermal Amplification by Cyclic Extension (IACE), based on the linear extension of a single-stranded DNA probe. IACE operates through the continuous extension of Probe 1 (a) into long single-stranded DNA with multiple repetitive sequences, facilitated by Probe 2 (a∗a∗) and Bst DNA polymerase. We found that the single-stranded DNA product of IACE could directly activate the CRISPR-Cas12a system without requiring a protospacer adjacent motif (PAM). By integrating IACE with a three-way junction structure and a nicking enzyme, we established a one-step signal amplification strategy for the detection of lncRNA MALAT1, achieving a detection limit as low as 37.5 fM using the CRISPR-Cas system.
Significance
The biosensor developed in the present study simplifies workflows, minimizes contamination risks, and demonstrates exceptional detection performance in tumor patient samples, highlighting its potential to advance clinical tumor diagnostic approaches.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.