现场氟化物传感器的设计与开发:时间依赖密度泛函理论方法与实现

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Shrikant Kashyap , Sibnath Kayal , Tapas K Mandal
{"title":"现场氟化物传感器的设计与开发:时间依赖密度泛函理论方法与实现","authors":"Shrikant Kashyap ,&nbsp;Sibnath Kayal ,&nbsp;Tapas K Mandal","doi":"10.1016/j.ces.2025.121675","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel colorimetric fluoride (F<sup>-</sup>) sensor using the iron thiocyanate route, forming a <em>hexafluoroferrate</em> (FeF<sub>6</sub>) complex. The sensing mechanism has been explored using Time-Dependent Density Functional Theory (TD-DFT) calculations, with computationally generated electronic spectra validated experimentally by UV–vis spectroscopy in the visible range at a wavelength (λ<sub>max</sub>) of 455 nm. Computational studies provided more profound insights into molecular structure, electronic transitions, solvent effects, and the role of frontier molecular orbitals in the observed colorimetric changes. The optical sensor employs a photoresistor to quantify F<sup>-</sup> via color intensity, achieving 0.46 mgL<sup>-1</sup> LOD and a 0.5–47.5 mgL<sup>-1</sup> detection range. Validation across 76 real-life samples yielded absolute % errors of 4.68–15.65 % and recoveries of 93.16–105.39 %. To the best of our knowledge, this is the first successful translation of FeSCN and FeF<sub>6</sub> computational studies into a portable fluoride sensor with the most cost-effective, rapid, and broad-range solution for onsite fluoride detection.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"312 ","pages":"Article 121675"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and development of an onsite fluoride sensor: Time dependent-density functional theory approach and implementation\",\"authors\":\"Shrikant Kashyap ,&nbsp;Sibnath Kayal ,&nbsp;Tapas K Mandal\",\"doi\":\"10.1016/j.ces.2025.121675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel colorimetric fluoride (F<sup>-</sup>) sensor using the iron thiocyanate route, forming a <em>hexafluoroferrate</em> (FeF<sub>6</sub>) complex. The sensing mechanism has been explored using Time-Dependent Density Functional Theory (TD-DFT) calculations, with computationally generated electronic spectra validated experimentally by UV–vis spectroscopy in the visible range at a wavelength (λ<sub>max</sub>) of 455 nm. Computational studies provided more profound insights into molecular structure, electronic transitions, solvent effects, and the role of frontier molecular orbitals in the observed colorimetric changes. The optical sensor employs a photoresistor to quantify F<sup>-</sup> via color intensity, achieving 0.46 mgL<sup>-1</sup> LOD and a 0.5–47.5 mgL<sup>-1</sup> detection range. Validation across 76 real-life samples yielded absolute % errors of 4.68–15.65 % and recoveries of 93.16–105.39 %. To the best of our knowledge, this is the first successful translation of FeSCN and FeF<sub>6</sub> computational studies into a portable fluoride sensor with the most cost-effective, rapid, and broad-range solution for onsite fluoride detection.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"312 \",\"pages\":\"Article 121675\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925004981\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925004981","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型比色氟化物(F-)传感器,采用硫氰酸铁路线,形成六氟铁酸盐(FeF6)配合物。利用时间依赖密度泛函理论(TD-DFT)计算探索了传感机制,并通过紫外-可见光谱在波长(λmax)为455 nm的可见范围内实验验证了计算生成的电子光谱。计算研究为分子结构、电子跃迁、溶剂效应以及前沿分子轨道在观察到的比色变化中的作用提供了更深刻的见解。光学传感器采用光敏电阻定量F -通过颜色强度,达到0.46 mg/L的LOD和0.5-47.5 mg/L的检测范围。对76个实际样品进行验证,绝对误差为4.68 ~ 15.65 %,回收率为93.16 ~ 105.39 %。据我们所知,这是第一次成功地将FeSCN和FeF6计算研究转化为便携式氟化物传感器,具有最具成本效益,快速和广泛的现场氟化物检测解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and development of an onsite fluoride sensor: Time dependent-density functional theory approach and implementation

Design and development of an onsite fluoride sensor: Time dependent-density functional theory approach and implementation

Design and development of an onsite fluoride sensor: Time dependent-density functional theory approach and implementation
This study presents a novel colorimetric fluoride (F-) sensor using the iron thiocyanate route, forming a hexafluoroferrate (FeF6) complex. The sensing mechanism has been explored using Time-Dependent Density Functional Theory (TD-DFT) calculations, with computationally generated electronic spectra validated experimentally by UV–vis spectroscopy in the visible range at a wavelength (λmax) of 455 nm. Computational studies provided more profound insights into molecular structure, electronic transitions, solvent effects, and the role of frontier molecular orbitals in the observed colorimetric changes. The optical sensor employs a photoresistor to quantify F- via color intensity, achieving 0.46 mgL-1 LOD and a 0.5–47.5 mgL-1 detection range. Validation across 76 real-life samples yielded absolute % errors of 4.68–15.65 % and recoveries of 93.16–105.39 %. To the best of our knowledge, this is the first successful translation of FeSCN and FeF6 computational studies into a portable fluoride sensor with the most cost-effective, rapid, and broad-range solution for onsite fluoride detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信