{"title":"1T′/1H二硫化钼异相双分子层的室温面外铁电性","authors":"Weijia Mu, Changming Ke, Changan Huangfu, Junhao Dong, Yaming Zhou, Jingying Zheng, Shufang Yue, Jing Li, Shi Liu, Liying Jiao","doi":"10.1002/adma.202504941","DOIUrl":null,"url":null,"abstract":"<p>The emergence of heterophase 2D materials, distinguished by their unique structures, has led to the discovery of a multitude of intriguing physical properties and a broad range of potential applications. Here, out-of-plane ferroelectricity is uncovered in a heterophase structure of 1T′/1H MoS<sub>2</sub>, which is synthesized via chemical vapor deposition (CVD) by tuning the formation energies for MoS<sub>2</sub> with varied phases. The atomically resolved structures of the obtained 1T′/1H MoS<sub>2</sub> bilayers are captured using scanning transmission electron microscopy (STEM) and are confirmed to be non-centrosymmetric using second-harmonic generation (SHG) characterizations. The intrinsic out-of-plane polarization is visualized by piezoresponse force microscopy (PFM), which reveals that ferroelectric domains can be manipulated under an applied electric field. Ferroelectric tunnel junction (FTJ) devices fabricated on these bilayers exhibit reversible switching between a high resistance state (HRS) and a low resistance state (LRS). Density functional theory (DFT) calculations elucidate that the intrinsic ferroelectricity in 1T′/1H bilayers is attributed to interlayer sliding and lattice mismatch. The findings not only expand the scope of 2D ferroelectrics to include vertically stacked heterophase bilayers but also open avenues for exploring the coupling effect between ferroelectricity and other phenomena such as magnetism, superconductivity, and photocatalysis in 2D heterophase TMDCs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 29","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-Temperature Out-Of-Plane Ferroelectricity in 1T′/1H MoS2 Heterophase Bilayer\",\"authors\":\"Weijia Mu, Changming Ke, Changan Huangfu, Junhao Dong, Yaming Zhou, Jingying Zheng, Shufang Yue, Jing Li, Shi Liu, Liying Jiao\",\"doi\":\"10.1002/adma.202504941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emergence of heterophase 2D materials, distinguished by their unique structures, has led to the discovery of a multitude of intriguing physical properties and a broad range of potential applications. Here, out-of-plane ferroelectricity is uncovered in a heterophase structure of 1T′/1H MoS<sub>2</sub>, which is synthesized via chemical vapor deposition (CVD) by tuning the formation energies for MoS<sub>2</sub> with varied phases. The atomically resolved structures of the obtained 1T′/1H MoS<sub>2</sub> bilayers are captured using scanning transmission electron microscopy (STEM) and are confirmed to be non-centrosymmetric using second-harmonic generation (SHG) characterizations. The intrinsic out-of-plane polarization is visualized by piezoresponse force microscopy (PFM), which reveals that ferroelectric domains can be manipulated under an applied electric field. Ferroelectric tunnel junction (FTJ) devices fabricated on these bilayers exhibit reversible switching between a high resistance state (HRS) and a low resistance state (LRS). Density functional theory (DFT) calculations elucidate that the intrinsic ferroelectricity in 1T′/1H bilayers is attributed to interlayer sliding and lattice mismatch. The findings not only expand the scope of 2D ferroelectrics to include vertically stacked heterophase bilayers but also open avenues for exploring the coupling effect between ferroelectricity and other phenomena such as magnetism, superconductivity, and photocatalysis in 2D heterophase TMDCs.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 29\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202504941\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202504941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Room-Temperature Out-Of-Plane Ferroelectricity in 1T′/1H MoS2 Heterophase Bilayer
The emergence of heterophase 2D materials, distinguished by their unique structures, has led to the discovery of a multitude of intriguing physical properties and a broad range of potential applications. Here, out-of-plane ferroelectricity is uncovered in a heterophase structure of 1T′/1H MoS2, which is synthesized via chemical vapor deposition (CVD) by tuning the formation energies for MoS2 with varied phases. The atomically resolved structures of the obtained 1T′/1H MoS2 bilayers are captured using scanning transmission electron microscopy (STEM) and are confirmed to be non-centrosymmetric using second-harmonic generation (SHG) characterizations. The intrinsic out-of-plane polarization is visualized by piezoresponse force microscopy (PFM), which reveals that ferroelectric domains can be manipulated under an applied electric field. Ferroelectric tunnel junction (FTJ) devices fabricated on these bilayers exhibit reversible switching between a high resistance state (HRS) and a low resistance state (LRS). Density functional theory (DFT) calculations elucidate that the intrinsic ferroelectricity in 1T′/1H bilayers is attributed to interlayer sliding and lattice mismatch. The findings not only expand the scope of 2D ferroelectrics to include vertically stacked heterophase bilayers but also open avenues for exploring the coupling effect between ferroelectricity and other phenomena such as magnetism, superconductivity, and photocatalysis in 2D heterophase TMDCs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.