用深度强化学习识别透明细胞肾细胞癌的潜在危险基因

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dazhi Lu, Yan Zheng, Xianyanling Yi, Jianye Hao, Xi Zeng, Lu Han, Zhigang Li, Shaoqing Jiao, Bei Jiang, Jianzhong Ai, Jiajie Peng
{"title":"用深度强化学习识别透明细胞肾细胞癌的潜在危险基因","authors":"Dazhi Lu, Yan Zheng, Xianyanling Yi, Jianye Hao, Xi Zeng, Lu Han, Zhigang Li, Shaoqing Jiao, Bei Jiang, Jianzhong Ai, Jiajie Peng","doi":"10.1038/s41467-025-58439-5","DOIUrl":null,"url":null,"abstract":"<p>Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To address this problem, we propose a deep reinforcement learning-based computational approach named RL-GenRisk to identify ccRCC risk genes. Distinct from traditional supervised models, RL-GenRisk frames the identification of ccRCC risk genes as a Markov Decision Process, combining the graph convolutional network and Deep Q-Network for risk gene identification. Moreover, a well-designed data-driven reward is proposed for mitigating the limitation of scant known risk genes. The evaluation demonstrates that RL-GenRisk outperforms existing methods in ccRCC risk gene identification. Additionally, RL-GenRisk identifies eight potential ccRCC risk genes. We successfully validated epidermal growth factor receptor (EGFR) and piccolo presynaptic cytomatrix protein (PCLO), corroborated through independent datasets and biological experimentation. This approach may also be used for other diseases in the future.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning\",\"authors\":\"Dazhi Lu, Yan Zheng, Xianyanling Yi, Jianye Hao, Xi Zeng, Lu Han, Zhigang Li, Shaoqing Jiao, Bei Jiang, Jianzhong Ai, Jiajie Peng\",\"doi\":\"10.1038/s41467-025-58439-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To address this problem, we propose a deep reinforcement learning-based computational approach named RL-GenRisk to identify ccRCC risk genes. Distinct from traditional supervised models, RL-GenRisk frames the identification of ccRCC risk genes as a Markov Decision Process, combining the graph convolutional network and Deep Q-Network for risk gene identification. Moreover, a well-designed data-driven reward is proposed for mitigating the limitation of scant known risk genes. The evaluation demonstrates that RL-GenRisk outperforms existing methods in ccRCC risk gene identification. Additionally, RL-GenRisk identifies eight potential ccRCC risk genes. We successfully validated epidermal growth factor receptor (EGFR) and piccolo presynaptic cytomatrix protein (PCLO), corroborated through independent datasets and biological experimentation. This approach may also be used for other diseases in the future.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58439-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58439-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

透明细胞肾细胞癌(ccRCC)是最常见的肾细胞癌类型。然而,我们对ccRCC风险基因的了解仍然有限。这一知识空白给有效诊断和治疗 ccRCC 带来了挑战。为解决这一问题,我们提出了一种基于深度强化学习的计算方法,名为 RL-GenRisk,用于识别 ccRCC 风险基因。与传统的监督模型不同,RL-GenRisk 将 ccRCC 风险基因的识别视为马尔可夫决策过程,结合图卷积网络和深度 Q 网络进行风险基因识别。此外,还提出了一种精心设计的数据驱动奖励,以缓解已知风险基因稀少的限制。评估结果表明,在 ccRCC 风险基因识别方面,RL-GenRisk 优于现有方法。此外,RL-GenRisk 还识别出了八个潜在的 ccRCC 风险基因。我们成功验证了表皮生长因子受体(EGFR)和皮质突触前细胞矩阵蛋白(PCLO),并通过独立数据集和生物实验加以证实。这种方法将来也可用于其他疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning

Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning

Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To address this problem, we propose a deep reinforcement learning-based computational approach named RL-GenRisk to identify ccRCC risk genes. Distinct from traditional supervised models, RL-GenRisk frames the identification of ccRCC risk genes as a Markov Decision Process, combining the graph convolutional network and Deep Q-Network for risk gene identification. Moreover, a well-designed data-driven reward is proposed for mitigating the limitation of scant known risk genes. The evaluation demonstrates that RL-GenRisk outperforms existing methods in ccRCC risk gene identification. Additionally, RL-GenRisk identifies eight potential ccRCC risk genes. We successfully validated epidermal growth factor receptor (EGFR) and piccolo presynaptic cytomatrix protein (PCLO), corroborated through independent datasets and biological experimentation. This approach may also be used for other diseases in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信