非对称催化选择性预测的元学习方法

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sukriti Singh, José Miguel Hernández-Lobato
{"title":"非对称催化选择性预测的元学习方法","authors":"Sukriti Singh, José Miguel Hernández-Lobato","doi":"10.1038/s41467-025-58854-8","DOIUrl":null,"url":null,"abstract":"<p>Transition metal-catalyzed asymmetric reactions are of high contemporary importance in organic synthesis. Recently, machine learning (ML) has shown promise in accelerating the development of newer catalytic protocols. However, the need for large amount of experimental data can present a bottleneck for implementing ML models. Here, we propose a meta-learning workflow that can harness the literature-derived data to extract shared reaction features and requires only a few examples to predict the outcome of new reactions. Prototypical networks are used as a meta-learning method to predict the enantioselectivity of asymmetric hydrogenation of olefins. This meta-learning model consistently provides significant performance improvement over other popular ML methods such as random forests and graph neural networks. The performance of our meta-model is analyzed with varying sizes of training examples to demonstrate its utility even with limited data. A good model performance on an out-of-sample test set further indicates the general applicability of our approach. We believe this work will provide a leap forward in identifying promising reactions in the early phases of reaction development when minimal data is available.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meta-learning approach for selectivity prediction in asymmetric catalysis\",\"authors\":\"Sukriti Singh, José Miguel Hernández-Lobato\",\"doi\":\"10.1038/s41467-025-58854-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transition metal-catalyzed asymmetric reactions are of high contemporary importance in organic synthesis. Recently, machine learning (ML) has shown promise in accelerating the development of newer catalytic protocols. However, the need for large amount of experimental data can present a bottleneck for implementing ML models. Here, we propose a meta-learning workflow that can harness the literature-derived data to extract shared reaction features and requires only a few examples to predict the outcome of new reactions. Prototypical networks are used as a meta-learning method to predict the enantioselectivity of asymmetric hydrogenation of olefins. This meta-learning model consistently provides significant performance improvement over other popular ML methods such as random forests and graph neural networks. The performance of our meta-model is analyzed with varying sizes of training examples to demonstrate its utility even with limited data. A good model performance on an out-of-sample test set further indicates the general applicability of our approach. We believe this work will provide a leap forward in identifying promising reactions in the early phases of reaction development when minimal data is available.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58854-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58854-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属催化的不对称反应在当代有机合成中具有重要意义。最近,机器学习(ML)在加速新催化协议的开发方面显示出了希望。然而,对大量实验数据的需求可能成为实现机器学习模型的瓶颈。在这里,我们提出了一个元学习工作流,它可以利用文献衍生的数据来提取共享的反应特征,并且只需要几个例子就可以预测新反应的结果。采用原型网络作为元学习方法预测烯烃不对称加氢反应的对映选择性。与其他流行的机器学习方法(如随机森林和图神经网络)相比,这种元学习模型始终提供显著的性能改进。我们用不同大小的训练样本分析了元模型的性能,以证明它在有限数据下的效用。在样本外测试集上良好的模型性能进一步表明了我们的方法的一般适用性。我们相信这项工作将为在反应发展的早期阶段识别有希望的反应提供一个飞跃,当时可用的数据很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A meta-learning approach for selectivity prediction in asymmetric catalysis

A meta-learning approach for selectivity prediction in asymmetric catalysis

Transition metal-catalyzed asymmetric reactions are of high contemporary importance in organic synthesis. Recently, machine learning (ML) has shown promise in accelerating the development of newer catalytic protocols. However, the need for large amount of experimental data can present a bottleneck for implementing ML models. Here, we propose a meta-learning workflow that can harness the literature-derived data to extract shared reaction features and requires only a few examples to predict the outcome of new reactions. Prototypical networks are used as a meta-learning method to predict the enantioselectivity of asymmetric hydrogenation of olefins. This meta-learning model consistently provides significant performance improvement over other popular ML methods such as random forests and graph neural networks. The performance of our meta-model is analyzed with varying sizes of training examples to demonstrate its utility even with limited data. A good model performance on an out-of-sample test set further indicates the general applicability of our approach. We believe this work will provide a leap forward in identifying promising reactions in the early phases of reaction development when minimal data is available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信