三维 Silsesquioxane 笼式共价有机框架实现准固态锂金属电池中的高效离子传输

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-16 DOI:10.1002/smll.202501988
Yuxin Xue, Qiong Lin, Xiangfeng Sun, Dongxia Li, Yulin Fu, Zhiqi Li, Yuanhao Shi, Chongxian Luo, Xuefeng Gui, Kai Xu
{"title":"三维 Silsesquioxane 笼式共价有机框架实现准固态锂金属电池中的高效离子传输","authors":"Yuxin Xue,&nbsp;Qiong Lin,&nbsp;Xiangfeng Sun,&nbsp;Dongxia Li,&nbsp;Yulin Fu,&nbsp;Zhiqi Li,&nbsp;Yuanhao Shi,&nbsp;Chongxian Luo,&nbsp;Xuefeng Gui,&nbsp;Kai Xu","doi":"10.1002/smll.202501988","DOIUrl":null,"url":null,"abstract":"<p>The resurgence of lithium metal batteries (LMBs) necessitates advancements in electrolyte engineering to regulate ion transport and manipulate interfacial characteristics. Noteworthy strategies encompass the development of high-efficiency lithium-ion conductors for quasi-solid-state composite electrolytes. In this context, two crystalline 3D COFs are presented that are thoughtfully designed by selecting decasilsesquioxane (T<sub>10</sub>) cage building blocks and linear linkers to open up efficient ion-conducting pathways. The cage silsesquioxane-knotted COFs (CSQ-COFs) feature densely interconnected pore channels and a multimodal pore size distribution, which gives them the potential to function as ionic conductors. In addition, the dissociation of electrolyte salts by the silsesquioxane framework, along with the strong adsorption of anions, synergistically enhances ion transport. The coin cell assembled with CSQ-COF displays an ionic conductivity of 0.727 mS cm<sup>−1</sup> at 80 °C, an <i>E</i><sub>a</sub> of 0.12 eV, and <i>t</i><sub>Li+</sub> of 0.83. Therefore, Li symmetrical cell demonstrates excellent Li plating/stripping behaviors for 600 h under 0.5 mA cm<sup>−2</sup>. The Li/LiFePO<sub>4</sub> cell containing the CSQ-COF solid-state electrolyte delivers an initial discharge capacity of ≈159.6 mAh g<sup>−1</sup> at a rate of 0.5 C at room temperature with excellent capacity retention after 150 cycles. This work provides a novel insight on the development of 3D COF ionic conductors.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 23","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Silsesquioxane Cage-Based Covalent Organic Frameworks Enabling Efficient Ion Transport in Quasi-Solid-State Lithium Metal Batteries\",\"authors\":\"Yuxin Xue,&nbsp;Qiong Lin,&nbsp;Xiangfeng Sun,&nbsp;Dongxia Li,&nbsp;Yulin Fu,&nbsp;Zhiqi Li,&nbsp;Yuanhao Shi,&nbsp;Chongxian Luo,&nbsp;Xuefeng Gui,&nbsp;Kai Xu\",\"doi\":\"10.1002/smll.202501988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The resurgence of lithium metal batteries (LMBs) necessitates advancements in electrolyte engineering to regulate ion transport and manipulate interfacial characteristics. Noteworthy strategies encompass the development of high-efficiency lithium-ion conductors for quasi-solid-state composite electrolytes. In this context, two crystalline 3D COFs are presented that are thoughtfully designed by selecting decasilsesquioxane (T<sub>10</sub>) cage building blocks and linear linkers to open up efficient ion-conducting pathways. The cage silsesquioxane-knotted COFs (CSQ-COFs) feature densely interconnected pore channels and a multimodal pore size distribution, which gives them the potential to function as ionic conductors. In addition, the dissociation of electrolyte salts by the silsesquioxane framework, along with the strong adsorption of anions, synergistically enhances ion transport. The coin cell assembled with CSQ-COF displays an ionic conductivity of 0.727 mS cm<sup>−1</sup> at 80 °C, an <i>E</i><sub>a</sub> of 0.12 eV, and <i>t</i><sub>Li+</sub> of 0.83. Therefore, Li symmetrical cell demonstrates excellent Li plating/stripping behaviors for 600 h under 0.5 mA cm<sup>−2</sup>. The Li/LiFePO<sub>4</sub> cell containing the CSQ-COF solid-state electrolyte delivers an initial discharge capacity of ≈159.6 mAh g<sup>−1</sup> at a rate of 0.5 C at room temperature with excellent capacity retention after 150 cycles. This work provides a novel insight on the development of 3D COF ionic conductors.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 23\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501988\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501988","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(lmb)的复苏需要电解质工程的进步来调节离子传输和操纵界面特性。值得注意的策略包括开发用于准固态复合电解质的高效锂离子导体。在这种情况下,提出了两种结晶3D COFs,它们通过选择十硅氧烷(T10)笼型构建块和线性连接体来设计,以开辟有效的离子传导途径。笼型硅氧烷结COFs (CSQ-COFs)具有紧密互连的孔隙通道和多模态孔径分布,这使得它们具有离子导体的潜力。此外,硅氧烷框架对电解质盐的解离,以及对阴离子的强吸附,协同增强了离子运输。用CSQ-COF组装的硬币电池在80℃时的离子电导率为0.727 mS cm−1,电导率为0.12 eV, tLi+为0.83。因此,在0.5 mA cm−2下,锂对称电池在600小时内表现出优异的镀/剥离行为。含有CSQ-COF固态电解质的锂/LiFePO4电池在室温下以0.5 C的速率放电,初始放电容量为≈159.6 mAh g−1,循环150次后容量保持良好。这项工作为三维COF离子导体的发展提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D Silsesquioxane Cage-Based Covalent Organic Frameworks Enabling Efficient Ion Transport in Quasi-Solid-State Lithium Metal Batteries

3D Silsesquioxane Cage-Based Covalent Organic Frameworks Enabling Efficient Ion Transport in Quasi-Solid-State Lithium Metal Batteries

3D Silsesquioxane Cage-Based Covalent Organic Frameworks Enabling Efficient Ion Transport in Quasi-Solid-State Lithium Metal Batteries

The resurgence of lithium metal batteries (LMBs) necessitates advancements in electrolyte engineering to regulate ion transport and manipulate interfacial characteristics. Noteworthy strategies encompass the development of high-efficiency lithium-ion conductors for quasi-solid-state composite electrolytes. In this context, two crystalline 3D COFs are presented that are thoughtfully designed by selecting decasilsesquioxane (T10) cage building blocks and linear linkers to open up efficient ion-conducting pathways. The cage silsesquioxane-knotted COFs (CSQ-COFs) feature densely interconnected pore channels and a multimodal pore size distribution, which gives them the potential to function as ionic conductors. In addition, the dissociation of electrolyte salts by the silsesquioxane framework, along with the strong adsorption of anions, synergistically enhances ion transport. The coin cell assembled with CSQ-COF displays an ionic conductivity of 0.727 mS cm−1 at 80 °C, an Ea of 0.12 eV, and tLi+ of 0.83. Therefore, Li symmetrical cell demonstrates excellent Li plating/stripping behaviors for 600 h under 0.5 mA cm−2. The Li/LiFePO4 cell containing the CSQ-COF solid-state electrolyte delivers an initial discharge capacity of ≈159.6 mAh g−1 at a rate of 0.5 C at room temperature with excellent capacity retention after 150 cycles. This work provides a novel insight on the development of 3D COF ionic conductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信