Thanseeha Sherin P A, Akhil Raman T. S, M.M. Juvaid, Anchal Rana, Sambasivam Sangaraju, Sabyasachi Chakrabortty, Abhimanyu Rana, K. C. James Raju, Siddhartha Ghosh
{"title":"脉冲激光沉积制备激光退火氧化石墨烯薄膜的疏水性调节","authors":"Thanseeha Sherin P A, Akhil Raman T. S, M.M. Juvaid, Anchal Rana, Sambasivam Sangaraju, Sabyasachi Chakrabortty, Abhimanyu Rana, K. C. James Raju, Siddhartha Ghosh","doi":"10.1021/acs.langmuir.4c05249","DOIUrl":null,"url":null,"abstract":"Reduced graphene oxide (rGO) has captivated the scientific community due to its exceptional electrical conductivity, high specific surface area, and excellent mechanical strength. The physical properties of reduced graphene oxide (rGO) are strongly dependent on the presence of different functional groups in its structural framework, along with surface roughness. In this study, laser annealing was employed by a nanosecond Nd:YAG laser to investigate the impact of varying laser energies on the wettability and conductivity of reduced graphene oxide (rGO) samples grown by the pulsed laser deposition (PLD) technique. The rGO films were annealed with different laser fluences, such as 10, 20, 30, 38, 48, 55, and 250 mJ/cm<sup>2</sup>. Our results reveal a notable transition in wettability, transforming the initially hydrophobic rGO samples into a hydrophilic state. Hydrophilic graphene oxide (GO) or reduced graphene oxide (rGO) surfaces have significant potential for use in biomedical applications due to their unique combination of properties, including biocompatibility, high surface area, and abundant oxygen-containing functional groups. Along with wettability properties, conductivity changes were also observed. The presented findings not only contribute to the understanding of laser-induced modifications in rGO but also highlight the potential applications of controlled laser annealing in tailoring the surface properties of graphene-based materials for diverse technological advancements.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Hydrophobicity of Laser-Annealed rGO Thin Films Synthesized by Pulsed Laser Deposition\",\"authors\":\"Thanseeha Sherin P A, Akhil Raman T. S, M.M. Juvaid, Anchal Rana, Sambasivam Sangaraju, Sabyasachi Chakrabortty, Abhimanyu Rana, K. C. James Raju, Siddhartha Ghosh\",\"doi\":\"10.1021/acs.langmuir.4c05249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduced graphene oxide (rGO) has captivated the scientific community due to its exceptional electrical conductivity, high specific surface area, and excellent mechanical strength. The physical properties of reduced graphene oxide (rGO) are strongly dependent on the presence of different functional groups in its structural framework, along with surface roughness. In this study, laser annealing was employed by a nanosecond Nd:YAG laser to investigate the impact of varying laser energies on the wettability and conductivity of reduced graphene oxide (rGO) samples grown by the pulsed laser deposition (PLD) technique. The rGO films were annealed with different laser fluences, such as 10, 20, 30, 38, 48, 55, and 250 mJ/cm<sup>2</sup>. Our results reveal a notable transition in wettability, transforming the initially hydrophobic rGO samples into a hydrophilic state. Hydrophilic graphene oxide (GO) or reduced graphene oxide (rGO) surfaces have significant potential for use in biomedical applications due to their unique combination of properties, including biocompatibility, high surface area, and abundant oxygen-containing functional groups. Along with wettability properties, conductivity changes were also observed. The presented findings not only contribute to the understanding of laser-induced modifications in rGO but also highlight the potential applications of controlled laser annealing in tailoring the surface properties of graphene-based materials for diverse technological advancements.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c05249\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05249","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning the Hydrophobicity of Laser-Annealed rGO Thin Films Synthesized by Pulsed Laser Deposition
Reduced graphene oxide (rGO) has captivated the scientific community due to its exceptional electrical conductivity, high specific surface area, and excellent mechanical strength. The physical properties of reduced graphene oxide (rGO) are strongly dependent on the presence of different functional groups in its structural framework, along with surface roughness. In this study, laser annealing was employed by a nanosecond Nd:YAG laser to investigate the impact of varying laser energies on the wettability and conductivity of reduced graphene oxide (rGO) samples grown by the pulsed laser deposition (PLD) technique. The rGO films were annealed with different laser fluences, such as 10, 20, 30, 38, 48, 55, and 250 mJ/cm2. Our results reveal a notable transition in wettability, transforming the initially hydrophobic rGO samples into a hydrophilic state. Hydrophilic graphene oxide (GO) or reduced graphene oxide (rGO) surfaces have significant potential for use in biomedical applications due to their unique combination of properties, including biocompatibility, high surface area, and abundant oxygen-containing functional groups. Along with wettability properties, conductivity changes were also observed. The presented findings not only contribute to the understanding of laser-induced modifications in rGO but also highlight the potential applications of controlled laser annealing in tailoring the surface properties of graphene-based materials for diverse technological advancements.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).