细致的研究:揭示锌锰水电池的电化学反应

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongxu Guo, Jie Sun, Chen Wang, Haijia Quan, Hongdi Lu, Yingjin Wei, Chenglin Sun, Shenghan Wang
{"title":"细致的研究:揭示锌锰水电池的电化学反应","authors":"Dongxu Guo, Jie Sun, Chen Wang, Haijia Quan, Hongdi Lu, Yingjin Wei, Chenglin Sun, Shenghan Wang","doi":"10.1002/anie.202505102","DOIUrl":null,"url":null,"abstract":": The rechargeable aqueous Zn||MnO2 batteries have been extensively explored, but the electrochemical reaction mechanisms, especially in terms of Mn2+/MnO2 dissolution/deposition and Zn2+/H+ intercalation chemistry, are still not fully understood. Herein, a Zn||MnO2‐based battery system is constructed and the variation of the battery composition is skillfully regulated by the separation of variables. The possibility of Zn2+/H+ intercalation chemistry is ruled out and the dominance of the dissolution/deposition mechanism is strongly demonstrated. This study confirms that the chemistry of the controversial double‐discharge platform is a dissolution reaction, determined by different proton concentrations and zinc ions hydrolysis. Discharge Plateau I is the MnO2 dissolution dominated by the surplus H+ in the electrolyte, while Discharge Plateau II is the smooth discharge plateau resulting from the hydrolysis of Zn2+ releasing protons when the proton concentration decreases to the point of Zn(OH)2 generation. This work provides a better understanding of the dissolution/deposition mechanism of Zn||MnO2 and paves the way for the practical application of manganese‐based aqueous batteries. It also provides a comprehensive method to study the mechanism of electrochemical reactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"50 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To Make a Painstaking Investigation: Revealing the Electrochemical Reactions in Aqueous Zn‐Mn Batteries\",\"authors\":\"Dongxu Guo, Jie Sun, Chen Wang, Haijia Quan, Hongdi Lu, Yingjin Wei, Chenglin Sun, Shenghan Wang\",\"doi\":\"10.1002/anie.202505102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The rechargeable aqueous Zn||MnO2 batteries have been extensively explored, but the electrochemical reaction mechanisms, especially in terms of Mn2+/MnO2 dissolution/deposition and Zn2+/H+ intercalation chemistry, are still not fully understood. Herein, a Zn||MnO2‐based battery system is constructed and the variation of the battery composition is skillfully regulated by the separation of variables. The possibility of Zn2+/H+ intercalation chemistry is ruled out and the dominance of the dissolution/deposition mechanism is strongly demonstrated. This study confirms that the chemistry of the controversial double‐discharge platform is a dissolution reaction, determined by different proton concentrations and zinc ions hydrolysis. Discharge Plateau I is the MnO2 dissolution dominated by the surplus H+ in the electrolyte, while Discharge Plateau II is the smooth discharge plateau resulting from the hydrolysis of Zn2+ releasing protons when the proton concentration decreases to the point of Zn(OH)2 generation. This work provides a better understanding of the dissolution/deposition mechanism of Zn||MnO2 and paves the way for the practical application of manganese‐based aqueous batteries. It also provides a comprehensive method to study the mechanism of electrochemical reactions.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505102\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员对锌||型MnO2水溶液电池进行了广泛的研究,但其电化学反应机理,特别是在Mn2+/MnO2溶解/沉积和Zn2+/H+插层化学方面仍不完全清楚。本文构建了一个Zn||MnO2基电池系统,并通过分离变量巧妙地调节了电池成分的变化。排除了Zn2+/H+插层化学反应的可能性,充分证明了溶解/沉积机制的优势。该研究证实了有争议的双放电平台的化学性质是溶解反应,由不同的质子浓度和锌离子水解决定。放电平台I是电解液中剩余的H+主导的MnO2溶解,而放电平台II是质子浓度降低到生成Zn(OH)2点时,Zn2+水解释放质子而形成的平滑放电平台。该研究有助于更好地理解Zn||MnO2的溶解/沉积机理,为锰基水性电池的实际应用铺平了道路。这也为研究电化学反应机理提供了一种全面的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
To Make a Painstaking Investigation: Revealing the Electrochemical Reactions in Aqueous Zn‐Mn Batteries
: The rechargeable aqueous Zn||MnO2 batteries have been extensively explored, but the electrochemical reaction mechanisms, especially in terms of Mn2+/MnO2 dissolution/deposition and Zn2+/H+ intercalation chemistry, are still not fully understood. Herein, a Zn||MnO2‐based battery system is constructed and the variation of the battery composition is skillfully regulated by the separation of variables. The possibility of Zn2+/H+ intercalation chemistry is ruled out and the dominance of the dissolution/deposition mechanism is strongly demonstrated. This study confirms that the chemistry of the controversial double‐discharge platform is a dissolution reaction, determined by different proton concentrations and zinc ions hydrolysis. Discharge Plateau I is the MnO2 dissolution dominated by the surplus H+ in the electrolyte, while Discharge Plateau II is the smooth discharge plateau resulting from the hydrolysis of Zn2+ releasing protons when the proton concentration decreases to the point of Zn(OH)2 generation. This work provides a better understanding of the dissolution/deposition mechanism of Zn||MnO2 and paves the way for the practical application of manganese‐based aqueous batteries. It also provides a comprehensive method to study the mechanism of electrochemical reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信