Ge Wang, Yin Zhang, Jian Liu, Wen Chen, Kang Wang, Bo Cui, Bingkun Zou, Qiubao Ouyang, Yanming Zhang, Zhaoyang Hu, Lu Wang, Wentao Yan, Shenbao Jin, Jun Ding, Y. Morris Wang, Ting Zhu, Zan Li, Di Zhang, Evan Ma
{"title":"利用非晶纳米颗粒通过增材制造进行分散硬化","authors":"Ge Wang, Yin Zhang, Jian Liu, Wen Chen, Kang Wang, Bo Cui, Bingkun Zou, Qiubao Ouyang, Yanming Zhang, Zhaoyang Hu, Lu Wang, Wentao Yan, Shenbao Jin, Jun Ding, Y. Morris Wang, Ting Zhu, Zan Li, Di Zhang, Evan Ma","doi":"10.1038/s41467-025-58893-1","DOIUrl":null,"url":null,"abstract":"<p>Nanoparticles or precipitates are long used to block dislocations to strengthen metals. However, this strengthening mechanism unavoidably adds stress concentrations at the obstacles, instigating crack initiation that hampers ductility. Here, we demonstrate a strategy that replaces the traditional crystalline dispersions with dense amorphous nanoparticles, which is made possible via laser powder bed fusion. Porosity-free copper-based nanocomposites are demonstrated as a prototype, consisting of densely and uniformly distributed amorphous boron–carbide nanoparticles (~47 nm in average diameter, up to 12% volume fraction) via an in situ nanofragmentation and melt-quench process. The amorphous nanoparticles act as dislocation sinks, thereby alleviating local stress concentration. They also self-harden along with tensile deformation, promoting strain hardening and therefore homogeneous plastic flow. The as-built composite achieves a tensile strength of more than one gigapascal and a total elongation of approximately 10%, more than twice that of its crystalline dispersion counterpart. Defect accumulation is also suppressed upon cyclic deformation of the as-built bulk nanocomposites, delivering a fatigue strength limit (at > 10<sup>7</sup> cycles) of more than 70% of the tensile strength. Our results demonstrate an effective strategy for additive manufacturing of metallic materials with superior properties.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion hardening using amorphous nanoparticles deployed via additive manufacturing\",\"authors\":\"Ge Wang, Yin Zhang, Jian Liu, Wen Chen, Kang Wang, Bo Cui, Bingkun Zou, Qiubao Ouyang, Yanming Zhang, Zhaoyang Hu, Lu Wang, Wentao Yan, Shenbao Jin, Jun Ding, Y. Morris Wang, Ting Zhu, Zan Li, Di Zhang, Evan Ma\",\"doi\":\"10.1038/s41467-025-58893-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoparticles or precipitates are long used to block dislocations to strengthen metals. However, this strengthening mechanism unavoidably adds stress concentrations at the obstacles, instigating crack initiation that hampers ductility. Here, we demonstrate a strategy that replaces the traditional crystalline dispersions with dense amorphous nanoparticles, which is made possible via laser powder bed fusion. Porosity-free copper-based nanocomposites are demonstrated as a prototype, consisting of densely and uniformly distributed amorphous boron–carbide nanoparticles (~47 nm in average diameter, up to 12% volume fraction) via an in situ nanofragmentation and melt-quench process. The amorphous nanoparticles act as dislocation sinks, thereby alleviating local stress concentration. They also self-harden along with tensile deformation, promoting strain hardening and therefore homogeneous plastic flow. The as-built composite achieves a tensile strength of more than one gigapascal and a total elongation of approximately 10%, more than twice that of its crystalline dispersion counterpart. Defect accumulation is also suppressed upon cyclic deformation of the as-built bulk nanocomposites, delivering a fatigue strength limit (at > 10<sup>7</sup> cycles) of more than 70% of the tensile strength. Our results demonstrate an effective strategy for additive manufacturing of metallic materials with superior properties.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58893-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58893-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dispersion hardening using amorphous nanoparticles deployed via additive manufacturing
Nanoparticles or precipitates are long used to block dislocations to strengthen metals. However, this strengthening mechanism unavoidably adds stress concentrations at the obstacles, instigating crack initiation that hampers ductility. Here, we demonstrate a strategy that replaces the traditional crystalline dispersions with dense amorphous nanoparticles, which is made possible via laser powder bed fusion. Porosity-free copper-based nanocomposites are demonstrated as a prototype, consisting of densely and uniformly distributed amorphous boron–carbide nanoparticles (~47 nm in average diameter, up to 12% volume fraction) via an in situ nanofragmentation and melt-quench process. The amorphous nanoparticles act as dislocation sinks, thereby alleviating local stress concentration. They also self-harden along with tensile deformation, promoting strain hardening and therefore homogeneous plastic flow. The as-built composite achieves a tensile strength of more than one gigapascal and a total elongation of approximately 10%, more than twice that of its crystalline dispersion counterpart. Defect accumulation is also suppressed upon cyclic deformation of the as-built bulk nanocomposites, delivering a fatigue strength limit (at > 107 cycles) of more than 70% of the tensile strength. Our results demonstrate an effective strategy for additive manufacturing of metallic materials with superior properties.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.