{"title":"AdS3×S3 Ramond-Ramond通量的Virasoro-Shapiro振幅","authors":"Shai M. Chester, De-liang Zhong","doi":"10.1103/physrevlett.134.151602","DOIUrl":null,"url":null,"abstract":"We compute the anti–de Sitter Virasoro-Shapiro amplitude for scattering of dilatons in type IIB string theory with pure Ramond-Ramond flux on AdS</a:mi></a:mrow>3</a:mn></a:mrow></a:msub>×</a:mo>S</a:mi></a:mrow>3</a:mn></a:mrow></a:msup>×</a:mo>M</a:mi></a:mrow>4</a:mn></a:mrow></a:msub></a:mrow></a:math> for <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>M</c:mi><c:mn>4</c:mn></c:msub><c:mo>=</c:mo><c:msup><c:mi>T</c:mi><c:mn>4</c:mn></c:msup></c:math> or <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>K</e:mi><e:mn>3</e:mn></e:math>, to all orders in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mi>α</g:mi><g:mo>′</g:mo></g:msup></g:math> in a small anti–de Sitter curvature expansion. This is achieved by comparing the flat space limit of the dual D1D5 conformal field theory correlator to an ansatz for the amplitude as a world-sheet integral in terms of single valued multiple polylogarithms. The first curvature correction is fully fixed in this way, and satisfies consistency checks in the high energy limit, and by comparison of the energy of massive string operators to a semiclassical expansion. Our result gives infinite predictions for conformal field theory data in the planar limit at strong coupling, which can guide future integrability studies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AdS3×S3 Virasoro-Shapiro Amplitude with Ramond-Ramond Flux\",\"authors\":\"Shai M. Chester, De-liang Zhong\",\"doi\":\"10.1103/physrevlett.134.151602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the anti–de Sitter Virasoro-Shapiro amplitude for scattering of dilatons in type IIB string theory with pure Ramond-Ramond flux on AdS</a:mi></a:mrow>3</a:mn></a:mrow></a:msub>×</a:mo>S</a:mi></a:mrow>3</a:mn></a:mrow></a:msup>×</a:mo>M</a:mi></a:mrow>4</a:mn></a:mrow></a:msub></a:mrow></a:math> for <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>M</c:mi><c:mn>4</c:mn></c:msub><c:mo>=</c:mo><c:msup><c:mi>T</c:mi><c:mn>4</c:mn></c:msup></c:math> or <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>K</e:mi><e:mn>3</e:mn></e:math>, to all orders in <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msup><g:mi>α</g:mi><g:mo>′</g:mo></g:msup></g:math> in a small anti–de Sitter curvature expansion. This is achieved by comparing the flat space limit of the dual D1D5 conformal field theory correlator to an ansatz for the amplitude as a world-sheet integral in terms of single valued multiple polylogarithms. The first curvature correction is fully fixed in this way, and satisfies consistency checks in the high energy limit, and by comparison of the energy of massive string operators to a semiclassical expansion. Our result gives infinite predictions for conformal field theory data in the planar limit at strong coupling, which can guide future integrability studies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.151602\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.151602","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
AdS3×S3 Virasoro-Shapiro Amplitude with Ramond-Ramond Flux
We compute the anti–de Sitter Virasoro-Shapiro amplitude for scattering of dilatons in type IIB string theory with pure Ramond-Ramond flux on AdS3×S3×M4 for M4=T4 or K3, to all orders in α′ in a small anti–de Sitter curvature expansion. This is achieved by comparing the flat space limit of the dual D1D5 conformal field theory correlator to an ansatz for the amplitude as a world-sheet integral in terms of single valued multiple polylogarithms. The first curvature correction is fully fixed in this way, and satisfies consistency checks in the high energy limit, and by comparison of the energy of massive string operators to a semiclassical expansion. Our result gives infinite predictions for conformal field theory data in the planar limit at strong coupling, which can guide future integrability studies. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks