{"title":"变俯仰MAV机动控制的强化学习模拟到真实迁移","authors":"Zhikun Wang;Shiyu Zhao","doi":"10.1109/TIE.2025.3558030","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) algorithms can enable high-maneuverability in unmanned aerial vehicles (MAVs), but transferring them from simulation to real-world use is challenging. Variable-pitch propeller (VPP) MAVs offer greater agility, yet their complex dynamics complicate the sim-to-real transfer. This article introduces a novel RL framework to overcome these challenges, enabling VPP MAVs to perform advanced aerial maneuvers in real-world settings. Our approach includes real-to-sim transfer techniques, such as system identification, domain randomization, and curriculum learning to create robust training simulations and a sim-to-real transfer strategy combining a cascade control system with a fast-response low-level controller for reliable deployment. Results demonstrate the effectiveness of this framework in achieving zero-shot deployment, enabling MAVs to perform complex maneuvers such as flips and wall-backtracking.","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"72 10","pages":"10445-10454"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sim-to-Real Transfer in Reinforcement Learning for Maneuver Control of a Variable-Pitch MAV\",\"authors\":\"Zhikun Wang;Shiyu Zhao\",\"doi\":\"10.1109/TIE.2025.3558030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) algorithms can enable high-maneuverability in unmanned aerial vehicles (MAVs), but transferring them from simulation to real-world use is challenging. Variable-pitch propeller (VPP) MAVs offer greater agility, yet their complex dynamics complicate the sim-to-real transfer. This article introduces a novel RL framework to overcome these challenges, enabling VPP MAVs to perform advanced aerial maneuvers in real-world settings. Our approach includes real-to-sim transfer techniques, such as system identification, domain randomization, and curriculum learning to create robust training simulations and a sim-to-real transfer strategy combining a cascade control system with a fast-response low-level controller for reliable deployment. Results demonstrate the effectiveness of this framework in achieving zero-shot deployment, enabling MAVs to perform complex maneuvers such as flips and wall-backtracking.\",\"PeriodicalId\":13402,\"journal\":{\"name\":\"IEEE Transactions on Industrial Electronics\",\"volume\":\"72 10\",\"pages\":\"10445-10454\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965522/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965522/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Sim-to-Real Transfer in Reinforcement Learning for Maneuver Control of a Variable-Pitch MAV
Reinforcement learning (RL) algorithms can enable high-maneuverability in unmanned aerial vehicles (MAVs), but transferring them from simulation to real-world use is challenging. Variable-pitch propeller (VPP) MAVs offer greater agility, yet their complex dynamics complicate the sim-to-real transfer. This article introduces a novel RL framework to overcome these challenges, enabling VPP MAVs to perform advanced aerial maneuvers in real-world settings. Our approach includes real-to-sim transfer techniques, such as system identification, domain randomization, and curriculum learning to create robust training simulations and a sim-to-real transfer strategy combining a cascade control system with a fast-response low-level controller for reliable deployment. Results demonstrate the effectiveness of this framework in achieving zero-shot deployment, enabling MAVs to perform complex maneuvers such as flips and wall-backtracking.
期刊介绍:
Journal Name: IEEE Transactions on Industrial Electronics
Publication Frequency: Monthly
Scope:
The scope of IEEE Transactions on Industrial Electronics encompasses the following areas:
Applications of electronics, controls, and communications in industrial and manufacturing systems and processes.
Power electronics and drive control techniques.
System control and signal processing.
Fault detection and diagnosis.
Power systems.
Instrumentation, measurement, and testing.
Modeling and simulation.
Motion control.
Robotics.
Sensors and actuators.
Implementation of neural networks, fuzzy logic, and artificial intelligence in industrial systems.
Factory automation.
Communication and computer networks.