Monica M. Goncalves, Adwaith B. Uday, Taylor J. B. Forrester, S. Quinn W. Currie, Angelina S. Kim, Yue Feng, Yulia Jitkova, Algirdas Velyvis, Robert W. Harkness, Matthew S. Kimber, Aaron D. Schimmer, Natalie Zeytuni, Siavash Vahidi
{"title":"人线粒体ClpP蛋白酶变构活化的机制","authors":"Monica M. Goncalves, Adwaith B. Uday, Taylor J. B. Forrester, S. Quinn W. Currie, Angelina S. Kim, Yue Feng, Yulia Jitkova, Algirdas Velyvis, Robert W. Harkness, Matthew S. Kimber, Aaron D. Schimmer, Natalie Zeytuni, Siavash Vahidi","doi":"10.1073/pnas.2419881122","DOIUrl":null,"url":null,"abstract":"Human ClpP protease contributes to mitochondrial protein quality control by degrading misfolded proteins. ClpP is overexpressed in cancers such as acute myeloid leukemia (AML), where its inhibition leads to the accumulation of damaged respiratory chain subunits and cell death. Conversely, hyperactivating ClpP with small-molecule activators, such as the recently discovered ONC201, disrupts mitochondrial protein degradation and impairs respiration in cancer cells. Despite its critical role in human health, the mechanism underlying the structural and functional properties of human ClpP remains elusive. Notably, human ClpP is paradoxically activated by active-site inhibitors. All available structures of human ClpP published to date are in the inactive compact or compressed states, surprisingly even when ClpP is bound to an activator molecule such as ONC201. Here, we present structures of human mitochondrial ClpP in the active extended state, including a pair of structures where ClpP is bound to an active-site inhibitor. We demonstrate that amino acid substitutions in the handle region (A192E and E196R) recreate a conserved salt bridge found in bacterial ClpP, stabilizing the extended active state and significantly enhancing ClpP activity. We elucidate the ClpP activation mechanism, highlighting a hormetic effect where substoichiometric inhibitor binding triggers an allosteric transition that drives ClpP into its active extended state. Our findings link the conformational dynamics of ClpP to its catalytic function and provide high-resolution structures for the rational design of potent and specific ClpP inhibitors, with implications for targeting AML and other disorders with ClpP involvement.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"42 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of allosteric activation in human mitochondrial ClpP protease\",\"authors\":\"Monica M. Goncalves, Adwaith B. Uday, Taylor J. B. Forrester, S. Quinn W. Currie, Angelina S. Kim, Yue Feng, Yulia Jitkova, Algirdas Velyvis, Robert W. Harkness, Matthew S. Kimber, Aaron D. Schimmer, Natalie Zeytuni, Siavash Vahidi\",\"doi\":\"10.1073/pnas.2419881122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human ClpP protease contributes to mitochondrial protein quality control by degrading misfolded proteins. ClpP is overexpressed in cancers such as acute myeloid leukemia (AML), where its inhibition leads to the accumulation of damaged respiratory chain subunits and cell death. Conversely, hyperactivating ClpP with small-molecule activators, such as the recently discovered ONC201, disrupts mitochondrial protein degradation and impairs respiration in cancer cells. Despite its critical role in human health, the mechanism underlying the structural and functional properties of human ClpP remains elusive. Notably, human ClpP is paradoxically activated by active-site inhibitors. All available structures of human ClpP published to date are in the inactive compact or compressed states, surprisingly even when ClpP is bound to an activator molecule such as ONC201. Here, we present structures of human mitochondrial ClpP in the active extended state, including a pair of structures where ClpP is bound to an active-site inhibitor. We demonstrate that amino acid substitutions in the handle region (A192E and E196R) recreate a conserved salt bridge found in bacterial ClpP, stabilizing the extended active state and significantly enhancing ClpP activity. We elucidate the ClpP activation mechanism, highlighting a hormetic effect where substoichiometric inhibitor binding triggers an allosteric transition that drives ClpP into its active extended state. Our findings link the conformational dynamics of ClpP to its catalytic function and provide high-resolution structures for the rational design of potent and specific ClpP inhibitors, with implications for targeting AML and other disorders with ClpP involvement.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2419881122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419881122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mechanism of allosteric activation in human mitochondrial ClpP protease
Human ClpP protease contributes to mitochondrial protein quality control by degrading misfolded proteins. ClpP is overexpressed in cancers such as acute myeloid leukemia (AML), where its inhibition leads to the accumulation of damaged respiratory chain subunits and cell death. Conversely, hyperactivating ClpP with small-molecule activators, such as the recently discovered ONC201, disrupts mitochondrial protein degradation and impairs respiration in cancer cells. Despite its critical role in human health, the mechanism underlying the structural and functional properties of human ClpP remains elusive. Notably, human ClpP is paradoxically activated by active-site inhibitors. All available structures of human ClpP published to date are in the inactive compact or compressed states, surprisingly even when ClpP is bound to an activator molecule such as ONC201. Here, we present structures of human mitochondrial ClpP in the active extended state, including a pair of structures where ClpP is bound to an active-site inhibitor. We demonstrate that amino acid substitutions in the handle region (A192E and E196R) recreate a conserved salt bridge found in bacterial ClpP, stabilizing the extended active state and significantly enhancing ClpP activity. We elucidate the ClpP activation mechanism, highlighting a hormetic effect where substoichiometric inhibitor binding triggers an allosteric transition that drives ClpP into its active extended state. Our findings link the conformational dynamics of ClpP to its catalytic function and provide high-resolution structures for the rational design of potent and specific ClpP inhibitors, with implications for targeting AML and other disorders with ClpP involvement.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.