{"title":"短暂疼痛和长期获益:佐剂剂量指导免疫记忆。","authors":"Pabitra B Pal,Smita S Iyer","doi":"10.1172/jci190524","DOIUrl":null,"url":null,"abstract":"Vaccine hesitancy is often fueled by fears of side effects; however, most reactions result from innate immune activation and cytokine production, which are required for lasting immunity. For effective vaccines against HIV, innate activation is essential for differentiation of CD4+ T cells into T follicular helper cells (TFH), which guide rare B cells to mature into long-lived plasma cells that produce durable neutralizing antibodies (nAbs). In this issue of the JCI, Parham Ramezani-Rad et al. show that higher doses of saponin QS-21-MPLA nanoparticle (SMNP) adjuvant, combined with BG505 MD39 envelope (Env) protein, enhanced cytokine responses, drove stronger Env-specific TFH responses in blood, and increased Env-specific bone marrow plasma cells compared with lower doses. While tier 2 nAbs were sustained at memory in only a subset of animals, predominantly at the highest adjuvant dose, these findings highlight transient reactogenicity as an essential mechanism - not a flaw - for building durable immune memory.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient pain and long-term gain: adjuvant dose directs immune memory.\",\"authors\":\"Pabitra B Pal,Smita S Iyer\",\"doi\":\"10.1172/jci190524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vaccine hesitancy is often fueled by fears of side effects; however, most reactions result from innate immune activation and cytokine production, which are required for lasting immunity. For effective vaccines against HIV, innate activation is essential for differentiation of CD4+ T cells into T follicular helper cells (TFH), which guide rare B cells to mature into long-lived plasma cells that produce durable neutralizing antibodies (nAbs). In this issue of the JCI, Parham Ramezani-Rad et al. show that higher doses of saponin QS-21-MPLA nanoparticle (SMNP) adjuvant, combined with BG505 MD39 envelope (Env) protein, enhanced cytokine responses, drove stronger Env-specific TFH responses in blood, and increased Env-specific bone marrow plasma cells compared with lower doses. While tier 2 nAbs were sustained at memory in only a subset of animals, predominantly at the highest adjuvant dose, these findings highlight transient reactogenicity as an essential mechanism - not a flaw - for building durable immune memory.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci190524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci190524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient pain and long-term gain: adjuvant dose directs immune memory.
Vaccine hesitancy is often fueled by fears of side effects; however, most reactions result from innate immune activation and cytokine production, which are required for lasting immunity. For effective vaccines against HIV, innate activation is essential for differentiation of CD4+ T cells into T follicular helper cells (TFH), which guide rare B cells to mature into long-lived plasma cells that produce durable neutralizing antibodies (nAbs). In this issue of the JCI, Parham Ramezani-Rad et al. show that higher doses of saponin QS-21-MPLA nanoparticle (SMNP) adjuvant, combined with BG505 MD39 envelope (Env) protein, enhanced cytokine responses, drove stronger Env-specific TFH responses in blood, and increased Env-specific bone marrow plasma cells compared with lower doses. While tier 2 nAbs were sustained at memory in only a subset of animals, predominantly at the highest adjuvant dose, these findings highlight transient reactogenicity as an essential mechanism - not a flaw - for building durable immune memory.