具有并行译码潜力的霍夫曼编码的新进展

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
K. Viswanathan Iyer, Karthick Seshadri, K. Srinivasulu
{"title":"具有并行译码潜力的霍夫曼编码的新进展","authors":"K. Viswanathan Iyer,&nbsp;Karthick Seshadri,&nbsp;K. Srinivasulu","doi":"10.1002/cpe.70096","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With examples we provide a minimum theory framework to understand data compression of text files—using Huffman coding—that will also provide a framework in designing experiments involving encoding/decoding. We propose a parallelizable heuristic for the naïve Huffman encoding and decoding which addresses the difficulty in parallelizing the inherently sequential Huffman decoding. While the proposal is amenable to a design of an efficient parallel algorithm for Huffman decoding, it also achieves a better compression ratio in the sense that the fraction of inputs for it works is over 0.83. The results of simulations of the parallel algorithm on a 64-core machine show that the proposed parallel modified Huffman encoding and decoding results in a faster algorithm when compared to the naïve Huffman scheme and the sequential version of the heuristic proposed. Further, the parallel implementation of the proposed encoding and decoding schemes resulted in a mean speed-up of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mfenced>\n <mrow>\n <mi>r</mi>\n <msub>\n <mi>log</mi>\n <mfenced>\n <mfrac>\n <mi>n</mi>\n <mi>r</mi>\n </mfrac>\n </mfenced>\n </msub>\n <mi>n</mi>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ O\\left(r{\\log}_{\\left(\\frac{n}{r}\\right)}n\\right) $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mi>r</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ O(r) $$</annotation>\n </semantics></math> respectively over the naïve Huffman encoding and decoding when processing an input of size <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> on a multi-core processor with <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation>$$ r $$</annotation>\n </semantics></math> cores.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 9-11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Advancement in Huffman Coding With a Potential for Parallel Decoding\",\"authors\":\"K. Viswanathan Iyer,&nbsp;Karthick Seshadri,&nbsp;K. Srinivasulu\",\"doi\":\"10.1002/cpe.70096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>With examples we provide a minimum theory framework to understand data compression of text files—using Huffman coding—that will also provide a framework in designing experiments involving encoding/decoding. We propose a parallelizable heuristic for the naïve Huffman encoding and decoding which addresses the difficulty in parallelizing the inherently sequential Huffman decoding. While the proposal is amenable to a design of an efficient parallel algorithm for Huffman decoding, it also achieves a better compression ratio in the sense that the fraction of inputs for it works is over 0.83. The results of simulations of the parallel algorithm on a 64-core machine show that the proposed parallel modified Huffman encoding and decoding results in a faster algorithm when compared to the naïve Huffman scheme and the sequential version of the heuristic proposed. Further, the parallel implementation of the proposed encoding and decoding schemes resulted in a mean speed-up of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mfenced>\\n <mrow>\\n <mi>r</mi>\\n <msub>\\n <mi>log</mi>\\n <mfenced>\\n <mfrac>\\n <mi>n</mi>\\n <mi>r</mi>\\n </mfrac>\\n </mfenced>\\n </msub>\\n <mi>n</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation>$$ O\\\\left(r{\\\\log}_{\\\\left(\\\\frac{n}{r}\\\\right)}n\\\\right) $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>r</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ O(r) $$</annotation>\\n </semantics></math> respectively over the naïve Huffman encoding and decoding when processing an input of size <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> on a multi-core processor with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation>$$ r $$</annotation>\\n </semantics></math> cores.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 9-11\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70096\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70096","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

通过示例,我们提供了一个最小的理论框架来理解文本文件的数据压缩-使用霍夫曼编码-这也将为设计涉及编码/解码的实验提供一个框架。我们提出了一个并行启发式的naïve霍夫曼编码和解码,它解决了并行化固有顺序的霍夫曼解码的困难。虽然该提议适用于霍夫曼解码的高效并行算法的设计,但它也实现了更好的压缩比,因为它的输入工作分数超过0.83。在64核机器上的仿真结果表明,与naïve Huffman方案和启发式算法的顺序版本相比,所提出的并行改进Huffman编码和解码算法的速度更快。此外,所提出的编码和解码方案的并行实现导致平均加速为O r log n r n在处理大小为n $$ n $$的输入时,分别对$$ O\left(r{\log}_{\left(\frac{n}{r}\right)}n\right) $$和O (r) $$ O(r) $$进行霍夫曼编码和解码在一个有r $$ r $$核的多核处理器上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Advancement in Huffman Coding With a Potential for Parallel Decoding

With examples we provide a minimum theory framework to understand data compression of text files—using Huffman coding—that will also provide a framework in designing experiments involving encoding/decoding. We propose a parallelizable heuristic for the naïve Huffman encoding and decoding which addresses the difficulty in parallelizing the inherently sequential Huffman decoding. While the proposal is amenable to a design of an efficient parallel algorithm for Huffman decoding, it also achieves a better compression ratio in the sense that the fraction of inputs for it works is over 0.83. The results of simulations of the parallel algorithm on a 64-core machine show that the proposed parallel modified Huffman encoding and decoding results in a faster algorithm when compared to the naïve Huffman scheme and the sequential version of the heuristic proposed. Further, the parallel implementation of the proposed encoding and decoding schemes resulted in a mean speed-up of O r log n r n $$ O\left(r{\log}_{\left(\frac{n}{r}\right)}n\right) $$ and O ( r ) $$ O(r) $$ respectively over the naïve Huffman encoding and decoding when processing an input of size n $$ n $$ on a multi-core processor with r $$ r $$ cores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信