{"title":"采用预定时间和无碰撞策略的多船编队双层模型预测控制","authors":"Han Xue, Kaibiao Sun","doi":"10.1049/cth2.70029","DOIUrl":null,"url":null,"abstract":"<p>As the demand for various practical applications continues to increase, challenges such as time consumption have compromised the real-time capabilities of formation agents. Model predictive control (MPC) is known for its computational complexity, which can result in synchronisation issues among followers and leaders. In this study, we propose a dual-layer formation control strategy. The upper layer focuses on trajectory planning and collision avoidance, utilising MPC and control barrier functions to derive the desired velocities. Within the MPC framework, this approach simplifies the control of second-order systems—incorporating both trajectories and velocities—into first-order systems that only require trajectory management. In the lower layer, we establish a new predefined-time leader-follower formation control for multiple vessels, designed to achieve the desired velocity. The proposed method is validated through simulations involving multiple unmanned surface vessels.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70029","citationCount":"0","resultStr":"{\"title\":\"Dual-Layer Model Predictive Control for Multi-Vessels Formation With Predefined-Time and Collision-Free Strategy\",\"authors\":\"Han Xue, Kaibiao Sun\",\"doi\":\"10.1049/cth2.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the demand for various practical applications continues to increase, challenges such as time consumption have compromised the real-time capabilities of formation agents. Model predictive control (MPC) is known for its computational complexity, which can result in synchronisation issues among followers and leaders. In this study, we propose a dual-layer formation control strategy. The upper layer focuses on trajectory planning and collision avoidance, utilising MPC and control barrier functions to derive the desired velocities. Within the MPC framework, this approach simplifies the control of second-order systems—incorporating both trajectories and velocities—into first-order systems that only require trajectory management. In the lower layer, we establish a new predefined-time leader-follower formation control for multiple vessels, designed to achieve the desired velocity. The proposed method is validated through simulations involving multiple unmanned surface vessels.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70029\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dual-Layer Model Predictive Control for Multi-Vessels Formation With Predefined-Time and Collision-Free Strategy
As the demand for various practical applications continues to increase, challenges such as time consumption have compromised the real-time capabilities of formation agents. Model predictive control (MPC) is known for its computational complexity, which can result in synchronisation issues among followers and leaders. In this study, we propose a dual-layer formation control strategy. The upper layer focuses on trajectory planning and collision avoidance, utilising MPC and control barrier functions to derive the desired velocities. Within the MPC framework, this approach simplifies the control of second-order systems—incorporating both trajectories and velocities—into first-order systems that only require trajectory management. In the lower layer, we establish a new predefined-time leader-follower formation control for multiple vessels, designed to achieve the desired velocity. The proposed method is validated through simulations involving multiple unmanned surface vessels.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.