Ni3N/g-C3N4上连续气水裂解光热催化制氢

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-02-25 DOI:10.1002/cctc.202500128
Zhonghao Han, Zhiying Yang, Yingpeng Xie, Ludong Yi, Xi Yang, Guangwen Xu
{"title":"Ni3N/g-C3N4上连续气水裂解光热催化制氢","authors":"Zhonghao Han,&nbsp;Zhiying Yang,&nbsp;Yingpeng Xie,&nbsp;Ludong Yi,&nbsp;Xi Yang,&nbsp;Guangwen Xu","doi":"10.1002/cctc.202500128","DOIUrl":null,"url":null,"abstract":"<p>The initiation of the water splitting reaction necessitates a considerable energy input and the associated energy barrier can be notably mitigated through the utilization of appropriate catalysts. Ni<sub>3</sub>N/g-C<sub>3</sub>N<sub>4</sub> catalyst was synthesized through a combination of thermal decomposition and hydrothermal synthesis techniques for photothermal water splitting reaction. The catalyst was characterized using XRD, HRTEM, UV–vis, XPS, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL). It was observed that the Ni<sub>3</sub>N promoter is uniformly dispersed on the g-C<sub>3</sub>N<sub>4</sub> exerting no discernible influence on the surface structure and crystal phase of the g-C<sub>3</sub>N<sub>4</sub>.The incorporation of Ni<sub>3</sub>N effectively decreases the resistance of g-C<sub>3</sub>N<sub>4</sub>, enhances the photocurrent intensity, facilitates the transfer of photogenerated electrons from g-C<sub>3</sub>N<sub>4</sub> to Ni<sub>3</sub>N, and suppresses the recombination of photogenerated carriers. Additionally, the findings from the photothermal water splitting experiments revealed that g-C<sub>3</sub>N<sub>4</sub> decreased the activation energy to 71.23 kJ·mol<sup>−1</sup>, while the Ni<sub>3</sub>N promoter further lowered it to 19.73 kJ·mol<sup>−1</sup>.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermalcatalytic Hydrogen Production by Continuous Gaseous Water Splitting over Ni3N/g-C3N4\",\"authors\":\"Zhonghao Han,&nbsp;Zhiying Yang,&nbsp;Yingpeng Xie,&nbsp;Ludong Yi,&nbsp;Xi Yang,&nbsp;Guangwen Xu\",\"doi\":\"10.1002/cctc.202500128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The initiation of the water splitting reaction necessitates a considerable energy input and the associated energy barrier can be notably mitigated through the utilization of appropriate catalysts. Ni<sub>3</sub>N/g-C<sub>3</sub>N<sub>4</sub> catalyst was synthesized through a combination of thermal decomposition and hydrothermal synthesis techniques for photothermal water splitting reaction. The catalyst was characterized using XRD, HRTEM, UV–vis, XPS, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL). It was observed that the Ni<sub>3</sub>N promoter is uniformly dispersed on the g-C<sub>3</sub>N<sub>4</sub> exerting no discernible influence on the surface structure and crystal phase of the g-C<sub>3</sub>N<sub>4</sub>.The incorporation of Ni<sub>3</sub>N effectively decreases the resistance of g-C<sub>3</sub>N<sub>4</sub>, enhances the photocurrent intensity, facilitates the transfer of photogenerated electrons from g-C<sub>3</sub>N<sub>4</sub> to Ni<sub>3</sub>N, and suppresses the recombination of photogenerated carriers. Additionally, the findings from the photothermal water splitting experiments revealed that g-C<sub>3</sub>N<sub>4</sub> decreased the activation energy to 71.23 kJ·mol<sup>−1</sup>, while the Ni<sub>3</sub>N promoter further lowered it to 19.73 kJ·mol<sup>−1</sup>.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202500128\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202500128","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水裂解反应的启动需要相当大的能量输入,通过使用适当的催化剂可以显著减轻相关的能垒。采用热分解与水热合成相结合的光热裂解反应技术合成了Ni3N/g-C3N4催化剂。采用XRD、HRTEM、UV-vis、XPS、电化学阻抗谱(EIS)、光致发光(PL)等方法对催化剂进行了表征。结果表明,Ni3N促进剂均匀地分散在g-C3N4上,对g-C3N4的表面结构和晶相没有明显的影响。Ni3N的掺入有效降低了g-C3N4的电阻,增强了光电流强度,促进了光生电子从g-C3N4向Ni3N的转移,抑制了光生载流子的复合。光热水裂解实验结果表明,g-C3N4能将催化剂的活化能降低到71.23 kJ·mol−1,而Ni3N的启动子能进一步降低到19.73 kJ·mol−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photothermalcatalytic Hydrogen Production by Continuous Gaseous Water Splitting over Ni3N/g-C3N4

Photothermalcatalytic Hydrogen Production by Continuous Gaseous Water Splitting over Ni3N/g-C3N4

The initiation of the water splitting reaction necessitates a considerable energy input and the associated energy barrier can be notably mitigated through the utilization of appropriate catalysts. Ni3N/g-C3N4 catalyst was synthesized through a combination of thermal decomposition and hydrothermal synthesis techniques for photothermal water splitting reaction. The catalyst was characterized using XRD, HRTEM, UV–vis, XPS, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL). It was observed that the Ni3N promoter is uniformly dispersed on the g-C3N4 exerting no discernible influence on the surface structure and crystal phase of the g-C3N4.The incorporation of Ni3N effectively decreases the resistance of g-C3N4, enhances the photocurrent intensity, facilitates the transfer of photogenerated electrons from g-C3N4 to Ni3N, and suppresses the recombination of photogenerated carriers. Additionally, the findings from the photothermal water splitting experiments revealed that g-C3N4 decreased the activation energy to 71.23 kJ·mol−1, while the Ni3N promoter further lowered it to 19.73 kJ·mol−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信