Wenhui Zhu, Jinlong Chang, Liusuyan Tian, Xiuyan Yang, Weifen Li
{"title":"消耗小胶质细胞中的 HSP60 可通过增强雄性小鼠的突触修剪导致突触功能障碍和抑郁样行为","authors":"Wenhui Zhu, Jinlong Chang, Liusuyan Tian, Xiuyan Yang, Weifen Li","doi":"10.1111/cns.70394","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Microglia, as resident macrophages in the brain, play an important role in depression. Heat shock protein 60 (HSP60), as a chaperone protein, plays a role in cell stress. However, the role of microglial HSP60 in depression remains unclear.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>CX3CR1-CreER was used to generate microglial-specific HSP60 knockout (HSP60 cKO) mice. Behavioral tests, western blotting, Golgi staining, biochemical assays, and proteomics were employed to assess depression-like symptoms, microglial activation, and synaptic changes.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>HSP60 cKO male mice exhibited depressive-like behaviors, without anxiety-like behavior, including increased immobility in the forced swimming and tail suspension tests, reduced sucrose preference, and elevated corticosterone (CORT) levels, indicating HPA axis activation. Microglial activation was confirmed by the increased expression levels of CD68 and CD86, the elevated transcription of the <i>cybb</i> gene, and reduced branch complexity. Enhanced phagocytosis of excitatory synapses, reduced dendritic spine density, and decreased glutamate levels were observed, with downregulation of synaptic proteins (AMPAR2, Synapsin-1, PSD95), indicating dysregulated synaptic pruning. Moreover, GO analysis showed 20 significant differentially expressed proteins (DEPs) from proteomics are associated with the presynaptic endosome, which plays a crucial role in maintaining synaptic function. Treatment with PLX3397, a CSF1R inhibitor, alleviated depressive-like behaviors and restored synaptic density in HSP60 cKO male mice.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>HSP60 deletion in microglia leads to overactivation of microglia, impaired synaptic function, and depression-like behaviors, highlighting the importance of microglial homeostasis in mood regulation and the potential therapeutic role of microglial modulation.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70394","citationCount":"0","resultStr":"{\"title\":\"Depletion of HSP60 in Microglia Leads to Synaptic Dysfunction and Depression-Like Behaviors Through Enhanced Synaptic Pruning in Male Mice\",\"authors\":\"Wenhui Zhu, Jinlong Chang, Liusuyan Tian, Xiuyan Yang, Weifen Li\",\"doi\":\"10.1111/cns.70394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>Microglia, as resident macrophages in the brain, play an important role in depression. Heat shock protein 60 (HSP60), as a chaperone protein, plays a role in cell stress. However, the role of microglial HSP60 in depression remains unclear.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>CX3CR1-CreER was used to generate microglial-specific HSP60 knockout (HSP60 cKO) mice. Behavioral tests, western blotting, Golgi staining, biochemical assays, and proteomics were employed to assess depression-like symptoms, microglial activation, and synaptic changes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>HSP60 cKO male mice exhibited depressive-like behaviors, without anxiety-like behavior, including increased immobility in the forced swimming and tail suspension tests, reduced sucrose preference, and elevated corticosterone (CORT) levels, indicating HPA axis activation. Microglial activation was confirmed by the increased expression levels of CD68 and CD86, the elevated transcription of the <i>cybb</i> gene, and reduced branch complexity. Enhanced phagocytosis of excitatory synapses, reduced dendritic spine density, and decreased glutamate levels were observed, with downregulation of synaptic proteins (AMPAR2, Synapsin-1, PSD95), indicating dysregulated synaptic pruning. Moreover, GO analysis showed 20 significant differentially expressed proteins (DEPs) from proteomics are associated with the presynaptic endosome, which plays a crucial role in maintaining synaptic function. Treatment with PLX3397, a CSF1R inhibitor, alleviated depressive-like behaviors and restored synaptic density in HSP60 cKO male mice.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>HSP60 deletion in microglia leads to overactivation of microglia, impaired synaptic function, and depression-like behaviors, highlighting the importance of microglial homeostasis in mood regulation and the potential therapeutic role of microglial modulation.</p>\\n </section>\\n </div>\",\"PeriodicalId\":154,\"journal\":{\"name\":\"CNS Neuroscience & Therapeutics\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70394\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Neuroscience & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cns.70394\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70394","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Depletion of HSP60 in Microglia Leads to Synaptic Dysfunction and Depression-Like Behaviors Through Enhanced Synaptic Pruning in Male Mice
Aims
Microglia, as resident macrophages in the brain, play an important role in depression. Heat shock protein 60 (HSP60), as a chaperone protein, plays a role in cell stress. However, the role of microglial HSP60 in depression remains unclear.
Methods
CX3CR1-CreER was used to generate microglial-specific HSP60 knockout (HSP60 cKO) mice. Behavioral tests, western blotting, Golgi staining, biochemical assays, and proteomics were employed to assess depression-like symptoms, microglial activation, and synaptic changes.
Results
HSP60 cKO male mice exhibited depressive-like behaviors, without anxiety-like behavior, including increased immobility in the forced swimming and tail suspension tests, reduced sucrose preference, and elevated corticosterone (CORT) levels, indicating HPA axis activation. Microglial activation was confirmed by the increased expression levels of CD68 and CD86, the elevated transcription of the cybb gene, and reduced branch complexity. Enhanced phagocytosis of excitatory synapses, reduced dendritic spine density, and decreased glutamate levels were observed, with downregulation of synaptic proteins (AMPAR2, Synapsin-1, PSD95), indicating dysregulated synaptic pruning. Moreover, GO analysis showed 20 significant differentially expressed proteins (DEPs) from proteomics are associated with the presynaptic endosome, which plays a crucial role in maintaining synaptic function. Treatment with PLX3397, a CSF1R inhibitor, alleviated depressive-like behaviors and restored synaptic density in HSP60 cKO male mice.
Conclusions
HSP60 deletion in microglia leads to overactivation of microglia, impaired synaptic function, and depression-like behaviors, highlighting the importance of microglial homeostasis in mood regulation and the potential therapeutic role of microglial modulation.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.