洛伦兹多项式和图的独立性序列

IF 0.9 3区 数学 Q2 MATHEMATICS
Amire Bendjeddou, Leonard Hardiman
{"title":"洛伦兹多项式和图的独立性序列","authors":"Amire Bendjeddou,&nbsp;Leonard Hardiman","doi":"10.1112/blms.70031","DOIUrl":null,"url":null,"abstract":"<p>We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <msub>\n <mi>W</mi>\n <mn>4</mn>\n </msub>\n </msub>\n <annotation>$R_{W_4}$</annotation>\n </semantics></math> be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <msub>\n <mi>W</mi>\n <mn>4</mn>\n </msub>\n </msub>\n <annotation>$R_{W_4}$</annotation>\n </semantics></math> are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1305-1323"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentzian polynomials and the independence sequences of graphs\",\"authors\":\"Amire Bendjeddou,&nbsp;Leonard Hardiman\",\"doi\":\"10.1112/blms.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <msub>\\n <mi>W</mi>\\n <mn>4</mn>\\n </msub>\\n </msub>\\n <annotation>$R_{W_4}$</annotation>\\n </semantics></math> be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <msub>\\n <mi>W</mi>\\n <mn>4</mn>\\n </msub>\\n </msub>\\n <annotation>$R_{W_4}$</annotation>\\n </semantics></math> are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1305-1323\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70031\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了图的多元无关多项式及其单变量限制系数的对数凹凸性。设rw4 $R_{W_4}$是定义在简单无向图上的算子,它将每条边替换为大小为4的毛虫。我们证明了rw4 $R_{W_4}$象中的所有图都是所谓的前洛伦兹图,即它们的多元无关多项式经过适当的处理后成为洛伦兹图。特别是,由于前洛伦兹图具有对数凹(因此单峰)独立序列,我们的结果在Alavi, Malde, Schwenk和Erdős的猜想上取得了进展,该猜想询问树或森林的独立序列是否为单峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lorentzian polynomials and the independence sequences of graphs

Lorentzian polynomials and the independence sequences of graphs

Lorentzian polynomials and the independence sequences of graphs

Lorentzian polynomials and the independence sequences of graphs

We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let R W 4 $R_{W_4}$ be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of R W 4 $R_{W_4}$ are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信