洛伦兹多项式和图的独立性序列

IF 0.8 3区 数学 Q2 MATHEMATICS
Amire Bendjeddou, Leonard Hardiman
{"title":"洛伦兹多项式和图的独立性序列","authors":"Amire Bendjeddou,&nbsp;Leonard Hardiman","doi":"10.1112/blms.70031","DOIUrl":null,"url":null,"abstract":"<p>We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <msub>\n <mi>W</mi>\n <mn>4</mn>\n </msub>\n </msub>\n <annotation>$R_{W_4}$</annotation>\n </semantics></math> be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <msub>\n <mi>W</mi>\n <mn>4</mn>\n </msub>\n </msub>\n <annotation>$R_{W_4}$</annotation>\n </semantics></math> are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1305-1323"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentzian polynomials and the independence sequences of graphs\",\"authors\":\"Amire Bendjeddou,&nbsp;Leonard Hardiman\",\"doi\":\"10.1112/blms.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <msub>\\n <mi>W</mi>\\n <mn>4</mn>\\n </msub>\\n </msub>\\n <annotation>$R_{W_4}$</annotation>\\n </semantics></math> be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <msub>\\n <mi>W</mi>\\n <mn>4</mn>\\n </msub>\\n </msub>\\n <annotation>$R_{W_4}$</annotation>\\n </semantics></math> are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1305-1323\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70031\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了图的多元无关多项式及其单变量限制系数的对数凹凸性。设rw4 $R_{W_4}$是定义在简单无向图上的算子,它将每条边替换为大小为4的毛虫。我们证明了rw4 $R_{W_4}$象中的所有图都是所谓的前洛伦兹图,即它们的多元无关多项式经过适当的处理后成为洛伦兹图。特别是,由于前洛伦兹图具有对数凹(因此单峰)独立序列,我们的结果在Alavi, Malde, Schwenk和Erdős的猜想上取得了进展,该猜想询问树或森林的独立序列是否为单峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lorentzian polynomials and the independence sequences of graphs

We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let R W 4 $R_{W_4}$ be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of R W 4 $R_{W_4}$ are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信