具有共价有机框架的原位化学键合管状二氧化钛促进了光催化活性

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-02-20 DOI:10.1002/cctc.202401977
Yuqing Gao, Yu Liu, Xiaojie Cao, Prof. Liping Guo, Prof. Lijun Liao, Prof. Zhenzi Li, Prof. Wei Zhou, Prof. Mingxia Li, Prof. Xuepeng Wang
{"title":"具有共价有机框架的原位化学键合管状二氧化钛促进了光催化活性","authors":"Yuqing Gao,&nbsp;Yu Liu,&nbsp;Xiaojie Cao,&nbsp;Prof. Liping Guo,&nbsp;Prof. Lijun Liao,&nbsp;Prof. Zhenzi Li,&nbsp;Prof. Wei Zhou,&nbsp;Prof. Mingxia Li,&nbsp;Prof. Xuepeng Wang","doi":"10.1002/cctc.202401977","DOIUrl":null,"url":null,"abstract":"<p>Solar driven water splitting to produce hydrogen is an ideal way to generate renewable energy, however, there is still a challenge of photo generated charge recombination. Herein, on the basis of unique tubular titanium dioxide (TiO<sub>2</sub>), covalent organic frameworks (COFs) are grown in situ and linked through chemical bonds to obtain heterojunction materials. The results show that when the Schiff base covalent organic frameworks (COF-1) loading is 30% (30% COF-1/TiO<sub>2</sub>), the photocatalytic hydrogen evolution rate (HER) of the composite material is as high as 31.9 mmol/g/h, which was twice that of the original TiO<sub>2</sub> and 2.6 times that of the original COF-1. Experimental characterization demonstrates that the tubular heterojunction (COF-1/TiO<sub>2</sub>) can improve the migration of electron-hole pairs and enhance the utilization efficiency of charge carriers. This provides new insights into the design of efficient photocatalytic materials.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ Chemical Bonded Tubular Titanium Dioxide With Covalent Organic Frameworks Promoted Photocatalytic Activity\",\"authors\":\"Yuqing Gao,&nbsp;Yu Liu,&nbsp;Xiaojie Cao,&nbsp;Prof. Liping Guo,&nbsp;Prof. Lijun Liao,&nbsp;Prof. Zhenzi Li,&nbsp;Prof. Wei Zhou,&nbsp;Prof. Mingxia Li,&nbsp;Prof. Xuepeng Wang\",\"doi\":\"10.1002/cctc.202401977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar driven water splitting to produce hydrogen is an ideal way to generate renewable energy, however, there is still a challenge of photo generated charge recombination. Herein, on the basis of unique tubular titanium dioxide (TiO<sub>2</sub>), covalent organic frameworks (COFs) are grown in situ and linked through chemical bonds to obtain heterojunction materials. The results show that when the Schiff base covalent organic frameworks (COF-1) loading is 30% (30% COF-1/TiO<sub>2</sub>), the photocatalytic hydrogen evolution rate (HER) of the composite material is as high as 31.9 mmol/g/h, which was twice that of the original TiO<sub>2</sub> and 2.6 times that of the original COF-1. Experimental characterization demonstrates that the tubular heterojunction (COF-1/TiO<sub>2</sub>) can improve the migration of electron-hole pairs and enhance the utilization efficiency of charge carriers. This provides new insights into the design of efficient photocatalytic materials.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202401977\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202401977","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的水分解制氢是一种理想的可再生能源产生方式,然而,光产生的电荷复合仍然存在挑战。本文以独特的管状二氧化钛(TiO2)为基础,原位生长共价有机框架(COFs),并通过化学键连接得到异质结材料。结果表明,当希夫碱共价有机骨架(COF-1)负载为30% (30% COF-1/TiO2)时,复合材料的光催化析氢速率(HER)高达31.9 mmol/g/h,是原始TiO2的2倍,是原始COF-1的2.6倍。实验表征表明,管状异质结(COF-1/TiO2)可以改善电子-空穴对的迁移,提高载流子的利用效率。这为高效光催化材料的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-situ Chemical Bonded Tubular Titanium Dioxide With Covalent Organic Frameworks Promoted Photocatalytic Activity

In-situ Chemical Bonded Tubular Titanium Dioxide With Covalent Organic Frameworks Promoted Photocatalytic Activity

Solar driven water splitting to produce hydrogen is an ideal way to generate renewable energy, however, there is still a challenge of photo generated charge recombination. Herein, on the basis of unique tubular titanium dioxide (TiO2), covalent organic frameworks (COFs) are grown in situ and linked through chemical bonds to obtain heterojunction materials. The results show that when the Schiff base covalent organic frameworks (COF-1) loading is 30% (30% COF-1/TiO2), the photocatalytic hydrogen evolution rate (HER) of the composite material is as high as 31.9 mmol/g/h, which was twice that of the original TiO2 and 2.6 times that of the original COF-1. Experimental characterization demonstrates that the tubular heterojunction (COF-1/TiO2) can improve the migration of electron-hole pairs and enhance the utilization efficiency of charge carriers. This provides new insights into the design of efficient photocatalytic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信