{"title":"Helson猜想的简短证明","authors":"Ofir Gorodetsky, Mo Dick Wong","doi":"10.1112/blms.70015","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>:</mo>\n <mi>N</mi>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$\\alpha \\colon \\mathbb {N}\\rightarrow S^1$</annotation>\n </semantics></math> be the Steinhaus multiplicative function: a completely multiplicative function such that <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mspace></mspace>\n <mtext>prime</mtext>\n </mrow>\n </msub>\n <annotation>$(\\alpha (p))_{p\\text{ prime}}$</annotation>\n </semantics></math> are i.i.d. random variables uniformly distributed on the complex unit circle <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>. Helson conjectured that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>E</mi>\n <mo>|</mo>\n </mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>x</mi>\n </mrow>\n </msub>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>=</mo>\n <mi>o</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>x</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {E}|\\sum _{n\\leqslant x}\\alpha (n)|=o(\\sqrt {x})$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$x \\rightarrow \\infty$</annotation>\n </semantics></math>, and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1065-1076"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70015","citationCount":"0","resultStr":"{\"title\":\"A short proof of Helson's conjecture\",\"authors\":\"Ofir Gorodetsky, Mo Dick Wong\",\"doi\":\"10.1112/blms.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>:</mo>\\n <mi>N</mi>\\n <mo>→</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\alpha \\\\colon \\\\mathbb {N}\\\\rightarrow S^1$</annotation>\\n </semantics></math> be the Steinhaus multiplicative function: a completely multiplicative function such that <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mspace></mspace>\\n <mtext>prime</mtext>\\n </mrow>\\n </msub>\\n <annotation>$(\\\\alpha (p))_{p\\\\text{ prime}}$</annotation>\\n </semantics></math> are i.i.d. random variables uniformly distributed on the complex unit circle <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$S^1$</annotation>\\n </semantics></math>. Helson conjectured that <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>E</mi>\\n <mo>|</mo>\\n </mrow>\\n <msub>\\n <mo>∑</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩽</mo>\\n <mi>x</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mi>α</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n <mo>=</mo>\\n <mi>o</mi>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <msqrt>\\n <mi>x</mi>\\n </msqrt>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {E}|\\\\sum _{n\\\\leqslant x}\\\\alpha (n)|=o(\\\\sqrt {x})$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$x \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>, and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1065-1076\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70015\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be the Steinhaus multiplicative function: a completely multiplicative function such that are i.i.d. random variables uniformly distributed on the complex unit circle . Helson conjectured that as , and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.