无枝晶锂金属电池三维导电支架双功能夹层的原位形成

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yonghwan Kim, Dohyeong Kim, Minjun Bae, Yujin Chang, Won Young An, Hwichan Hong, Seon Jae Hwang, Dongwan Kim, Jeongyeon Lee, Yuanzhe Piao
{"title":"无枝晶锂金属电池三维导电支架双功能夹层的原位形成","authors":"Yonghwan Kim,&nbsp;Dohyeong Kim,&nbsp;Minjun Bae,&nbsp;Yujin Chang,&nbsp;Won Young An,&nbsp;Hwichan Hong,&nbsp;Seon Jae Hwang,&nbsp;Dongwan Kim,&nbsp;Jeongyeon Lee,&nbsp;Yuanzhe Piao","doi":"10.1002/eem2.12861","DOIUrl":null,"url":null,"abstract":"<p>Regulating lithium (Li) plating/stripping behavior in three-dimensional (3D) conductive scaffolds is critical to stabilizing Li metal batteries (LMBs). Surface protrusions and roughness in these scaffolds can induce uneven distributions of the electric fields and ionic concentrations, forming “hot spots.” Hot spots may cause uncontrollable Li dendrites growth, presenting significant challenges to the cycle stability and safety of LMBs. To address these issues, we construct a Li ionic conductive-dielectric gradient bifunctional interlayer (ICDL) onto a 3D Li-injected graphene/carbon nanotube scaffold (LGCF) via in situ reaction of exfoliated hexagonal boron nitride (fhBN) and molten Li. Microscopic and spectroscopic analyses reveal that ICDL consists of fhBN-rich outer layer and inner layer enriched with Li<sub>3</sub>N and Li-boron composites (Li-B). The outer layer utilizes dielectric properties to effectively homogenize the electric field, while the inner layer ensures high Li ion conductivity. Moreover, DFT calculations indicate that ICDL can effectively adsorb Li and decrease the Li diffusion barrier, promoting enhanced Li ion transport. The modulation of Li kinetics by ICDL increases the critical length of the Li nucleus, enabling suppression of Li dendrite growth. Attributing to these advantages, the ICDL-coated LGCF (ICDL@LGCF) demonstrates impressive long-term cycle performances in both symmetric cells and full cells.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12861","citationCount":"0","resultStr":"{\"title\":\"In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries\",\"authors\":\"Yonghwan Kim,&nbsp;Dohyeong Kim,&nbsp;Minjun Bae,&nbsp;Yujin Chang,&nbsp;Won Young An,&nbsp;Hwichan Hong,&nbsp;Seon Jae Hwang,&nbsp;Dongwan Kim,&nbsp;Jeongyeon Lee,&nbsp;Yuanzhe Piao\",\"doi\":\"10.1002/eem2.12861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regulating lithium (Li) plating/stripping behavior in three-dimensional (3D) conductive scaffolds is critical to stabilizing Li metal batteries (LMBs). Surface protrusions and roughness in these scaffolds can induce uneven distributions of the electric fields and ionic concentrations, forming “hot spots.” Hot spots may cause uncontrollable Li dendrites growth, presenting significant challenges to the cycle stability and safety of LMBs. To address these issues, we construct a Li ionic conductive-dielectric gradient bifunctional interlayer (ICDL) onto a 3D Li-injected graphene/carbon nanotube scaffold (LGCF) via in situ reaction of exfoliated hexagonal boron nitride (fhBN) and molten Li. Microscopic and spectroscopic analyses reveal that ICDL consists of fhBN-rich outer layer and inner layer enriched with Li<sub>3</sub>N and Li-boron composites (Li-B). The outer layer utilizes dielectric properties to effectively homogenize the electric field, while the inner layer ensures high Li ion conductivity. Moreover, DFT calculations indicate that ICDL can effectively adsorb Li and decrease the Li diffusion barrier, promoting enhanced Li ion transport. The modulation of Li kinetics by ICDL increases the critical length of the Li nucleus, enabling suppression of Li dendrite growth. Attributing to these advantages, the ICDL-coated LGCF (ICDL@LGCF) demonstrates impressive long-term cycle performances in both symmetric cells and full cells.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12861\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12861\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12861","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

调节三维(3D)导电支架中的锂(Li)电镀/剥离行为对于稳定锂金属电池(lmb)至关重要。这些支架表面的突起和粗糙会导致电场和离子浓度分布不均匀,形成“热点”。热点可能导致不可控的Li枝晶生长,对lmb的循环稳定性和安全性提出了重大挑战。为了解决这些问题,我们通过脱落六方氮化硼(fhBN)和熔融锂的原位反应,在3D锂注入石墨烯/碳纳米管支架(LGCF)上构建了锂离子导电-介电梯度双功能夹层(ICDL)。显微和光谱分析表明,ICDL由富含fhbn的外层和富含Li3N和li -硼复合材料(Li-B)的内层组成。外层利用介电特性有效地均匀化电场,而内层则保证了高的锂离子导电性。此外,DFT计算表明,ICDL可以有效吸附Li,降低Li扩散势垒,促进Li离子输运增强。ICDL对Li动力学的调节增加了Li核的临界长度,从而抑制了Li枝晶的生长。由于这些优点,icdl包被的LGCF (ICDL@LGCF)在对称电池和满电池中都表现出令人印象深刻的长期循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries

In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries

Regulating lithium (Li) plating/stripping behavior in three-dimensional (3D) conductive scaffolds is critical to stabilizing Li metal batteries (LMBs). Surface protrusions and roughness in these scaffolds can induce uneven distributions of the electric fields and ionic concentrations, forming “hot spots.” Hot spots may cause uncontrollable Li dendrites growth, presenting significant challenges to the cycle stability and safety of LMBs. To address these issues, we construct a Li ionic conductive-dielectric gradient bifunctional interlayer (ICDL) onto a 3D Li-injected graphene/carbon nanotube scaffold (LGCF) via in situ reaction of exfoliated hexagonal boron nitride (fhBN) and molten Li. Microscopic and spectroscopic analyses reveal that ICDL consists of fhBN-rich outer layer and inner layer enriched with Li3N and Li-boron composites (Li-B). The outer layer utilizes dielectric properties to effectively homogenize the electric field, while the inner layer ensures high Li ion conductivity. Moreover, DFT calculations indicate that ICDL can effectively adsorb Li and decrease the Li diffusion barrier, promoting enhanced Li ion transport. The modulation of Li kinetics by ICDL increases the critical length of the Li nucleus, enabling suppression of Li dendrite growth. Attributing to these advantages, the ICDL-coated LGCF (ICDL@LGCF) demonstrates impressive long-term cycle performances in both symmetric cells and full cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信