局部恒定的颤振和曲率的正性

IF 0.8 3区 数学 Q2 MATHEMATICS
Niklas Müller
{"title":"局部恒定的颤振和曲率的正性","authors":"Niklas Müller","doi":"10.1112/blms.70012","DOIUrl":null,"url":null,"abstract":"<p>Up to finite étale cover, any smooth complex projective variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with nef anti-canonical bundle is a holomorphic fibre bundle over a smooth projective variety with trivial canonical class (<i>K</i>-trivial variety for short) with locally constant transition functions. We show that this result is optimal by proving that any projective fibre bundle with locally constant transition functions over a <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-trivial variety has a nef anti-canonical bundle. Moreover, we complement some results on the structure theory of varieties whose tangent bundle admits a singular Hermitian metric of positive curvature.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1005-1025"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70012","citationCount":"0","resultStr":"{\"title\":\"Locally constant fibrations and positivity of curvature\",\"authors\":\"Niklas Müller\",\"doi\":\"10.1112/blms.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Up to finite étale cover, any smooth complex projective variety <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with nef anti-canonical bundle is a holomorphic fibre bundle over a smooth projective variety with trivial canonical class (<i>K</i>-trivial variety for short) with locally constant transition functions. We show that this result is optimal by proving that any projective fibre bundle with locally constant transition functions over a <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-trivial variety has a nef anti-canonical bundle. Moreover, we complement some results on the structure theory of varieties whose tangent bundle admits a singular Hermitian metric of positive curvature.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1005-1025\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70012\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在有限的可变覆盖范围内,任何具有nef反正则束的光滑复射影簇X$ X$是具有局部常数过渡函数的平凡正则类(简称k平凡簇)光滑射影簇上的全纯纤维束。我们证明了在K$ K$ -平凡变化上,任何具有局部常数跃迁函数的射影纤维束都有一个网络反正则束,从而证明了这个结果是最优的。此外,我们还补充了关于其切束具有正曲率的奇异厄米度规的变异的结构理论的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally constant fibrations and positivity of curvature

Up to finite étale cover, any smooth complex projective variety X $X$ with nef anti-canonical bundle is a holomorphic fibre bundle over a smooth projective variety with trivial canonical class (K-trivial variety for short) with locally constant transition functions. We show that this result is optimal by proving that any projective fibre bundle with locally constant transition functions over a K $K$ -trivial variety has a nef anti-canonical bundle. Moreover, we complement some results on the structure theory of varieties whose tangent bundle admits a singular Hermitian metric of positive curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信