关于无穷点bc的Robin问题

IF 0.8 3区 数学 Q2 MATHEMATICS
Chiun-Chang Lee
{"title":"关于无穷点bc的Robin问题","authors":"Chiun-Chang Lee","doi":"10.1112/blms.70018","DOIUrl":null,"url":null,"abstract":"<p>We study semilinear equations with Robin-type infinite-point boundary conditions, where the boundary conditions depend nonlocally on the solution at infinitely many interior points. To overcome the difficulties arising from the lack of guaranteed variational structure in these models, we establish mappings that correspond to the boundary conditions. Through a combination of asymptotic analysis and fixed-point arguments, we prove the existence of solutions under specific assumptions. This approach is novel in related research.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1093-1117"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Robin problems with infinite-point BCs\",\"authors\":\"Chiun-Chang Lee\",\"doi\":\"10.1112/blms.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study semilinear equations with Robin-type infinite-point boundary conditions, where the boundary conditions depend nonlocally on the solution at infinitely many interior points. To overcome the difficulties arising from the lack of guaranteed variational structure in these models, we establish mappings that correspond to the boundary conditions. Through a combination of asymptotic analysis and fixed-point arguments, we prove the existence of solutions under specific assumptions. This approach is novel in related research.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1093-1117\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70018\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70018","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究具有robin型无穷点边界条件的半线性方程,其边界条件非局部依赖于无穷多个内点的解。为了克服这些模型中缺乏保证变分结构所带来的困难,我们建立了与边界条件相对应的映射。通过结合渐近分析和不动点论证,证明了在特定假设下解的存在性。这种方法在相关研究中是新颖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Robin problems with infinite-point BCs

We study semilinear equations with Robin-type infinite-point boundary conditions, where the boundary conditions depend nonlocally on the solution at infinitely many interior points. To overcome the difficulties arising from the lack of guaranteed variational structure in these models, we establish mappings that correspond to the boundary conditions. Through a combination of asymptotic analysis and fixed-point arguments, we prove the existence of solutions under specific assumptions. This approach is novel in related research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信