Seyedeh Sadrieh Emadian, Silvia Varagnolo, Ajay Kumar, Prashant Kumar, Pranay Ranjan, Viktoriya Pyeshkova, Naresh Vangapally, Nicholas P. Power, Sudhagar Pitchaimuthu, Alexander Chroneos, Saianand Gopalan, Prashant Sonar, Satheesh Krishnamurthy
{"title":"Borophene作为下一代能源和环境应用材料的表面工程","authors":"Seyedeh Sadrieh Emadian, Silvia Varagnolo, Ajay Kumar, Prashant Kumar, Pranay Ranjan, Viktoriya Pyeshkova, Naresh Vangapally, Nicholas P. Power, Sudhagar Pitchaimuthu, Alexander Chroneos, Saianand Gopalan, Prashant Sonar, Satheesh Krishnamurthy","doi":"10.1002/eem2.12881","DOIUrl":null,"url":null,"abstract":"<p>This review provides an insightful and comprehensive exploration of the emerging 2D material borophene, both pristine and modified, emphasizing its unique attributes and potential for sustainable applications. Borophene's distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties. The material exhibits superior electrical and thermal conductivity, surpassing many other 2D materials. Borophene's unique atomic spin arrangements further diversify its potential application for magnetism. Surface and interface engineering, through doping, functionalization, and synthesis of hybridized and nanocomposite borophene-based systems, is crucial for tailoring borophene's properties to specific applications. This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods, to enhance surface reactivity by increasing active sites through doping and surface modifications. These approaches optimize diffusion pathways improving accessibility for catalytic reactions, and tailor the electronic density to tune the optical and electronic behavior. Key applications explored include energy systems (batteries, supercapacitors, and hydrogen storage), catalysis for hydrogen and oxygen evolution reactions, sensors, and optoelectronics for advanced photonic devices. The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties, employ chemical modifications to enhance stability and leverage borophene's conductivity and reactivity for advanced photonics. Finally, the review addresses challenges and proposes solutions such as encapsulation, functionalization, and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers, enabling sustainable, commercial-scale applications.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12881","citationCount":"0","resultStr":"{\"title\":\"Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications\",\"authors\":\"Seyedeh Sadrieh Emadian, Silvia Varagnolo, Ajay Kumar, Prashant Kumar, Pranay Ranjan, Viktoriya Pyeshkova, Naresh Vangapally, Nicholas P. Power, Sudhagar Pitchaimuthu, Alexander Chroneos, Saianand Gopalan, Prashant Sonar, Satheesh Krishnamurthy\",\"doi\":\"10.1002/eem2.12881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review provides an insightful and comprehensive exploration of the emerging 2D material borophene, both pristine and modified, emphasizing its unique attributes and potential for sustainable applications. Borophene's distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties. The material exhibits superior electrical and thermal conductivity, surpassing many other 2D materials. Borophene's unique atomic spin arrangements further diversify its potential application for magnetism. Surface and interface engineering, through doping, functionalization, and synthesis of hybridized and nanocomposite borophene-based systems, is crucial for tailoring borophene's properties to specific applications. This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods, to enhance surface reactivity by increasing active sites through doping and surface modifications. These approaches optimize diffusion pathways improving accessibility for catalytic reactions, and tailor the electronic density to tune the optical and electronic behavior. Key applications explored include energy systems (batteries, supercapacitors, and hydrogen storage), catalysis for hydrogen and oxygen evolution reactions, sensors, and optoelectronics for advanced photonic devices. The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties, employ chemical modifications to enhance stability and leverage borophene's conductivity and reactivity for advanced photonics. Finally, the review addresses challenges and proposes solutions such as encapsulation, functionalization, and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers, enabling sustainable, commercial-scale applications.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12881\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12881\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12881","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications
This review provides an insightful and comprehensive exploration of the emerging 2D material borophene, both pristine and modified, emphasizing its unique attributes and potential for sustainable applications. Borophene's distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties. The material exhibits superior electrical and thermal conductivity, surpassing many other 2D materials. Borophene's unique atomic spin arrangements further diversify its potential application for magnetism. Surface and interface engineering, through doping, functionalization, and synthesis of hybridized and nanocomposite borophene-based systems, is crucial for tailoring borophene's properties to specific applications. This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods, to enhance surface reactivity by increasing active sites through doping and surface modifications. These approaches optimize diffusion pathways improving accessibility for catalytic reactions, and tailor the electronic density to tune the optical and electronic behavior. Key applications explored include energy systems (batteries, supercapacitors, and hydrogen storage), catalysis for hydrogen and oxygen evolution reactions, sensors, and optoelectronics for advanced photonic devices. The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties, employ chemical modifications to enhance stability and leverage borophene's conductivity and reactivity for advanced photonics. Finally, the review addresses challenges and proposes solutions such as encapsulation, functionalization, and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers, enabling sustainable, commercial-scale applications.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.