高等级 GBS 群的可分离性

IF 0.8 3区 数学 Q2 MATHEMATICS
Jone Lopez de Gamiz Zearra, Sam Shepherd
{"title":"高等级 GBS 群的可分离性","authors":"Jone Lopez de Gamiz Zearra,&nbsp;Sam Shepherd","doi":"10.1112/blms.70024","DOIUrl":null,"url":null,"abstract":"<p>A rank <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> generalized Baumslag–Solitar group is a group that splits as a finite graph of groups such that all vertex and edge groups are isomorphic to <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {Z}^n$</annotation>\n </semantics></math>. In this paper, we classify these groups in terms of their separability properties. Specifically, we determine when they are residually finite, subgroup separable, and cyclic subgroup separable.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1171-1194"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separability properties of higher rank GBS groups\",\"authors\":\"Jone Lopez de Gamiz Zearra,&nbsp;Sam Shepherd\",\"doi\":\"10.1112/blms.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A rank <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> generalized Baumslag–Solitar group is a group that splits as a finite graph of groups such that all vertex and edge groups are isomorphic to <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^n$</annotation>\\n </semantics></math>. In this paper, we classify these groups in terms of their separability properties. Specifically, we determine when they are residually finite, subgroup separable, and cyclic subgroup separable.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1171-1194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

秩n$ n$广义Baumslag-Solitar群是一个群分裂为群的有限图,使得所有顶点群和边群同构于Z n$ \mathbb {Z}^n$。在本文中,我们根据它们的可分性对这些群进行分类。具体地说,我们确定了它们何时是剩余有限的,何时是子群可分的,何时是循环子群可分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separability properties of higher rank GBS groups

A rank n $n$ generalized Baumslag–Solitar group is a group that splits as a finite graph of groups such that all vertex and edge groups are isomorphic to Z n $\mathbb {Z}^n$ . In this paper, we classify these groups in terms of their separability properties. Specifically, we determine when they are residually finite, subgroup separable, and cyclic subgroup separable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信