{"title":"人发激光诱导击穿光谱研究:人发中含量元素的定性和定量分析","authors":"Ines Arbi, Gündüz Yümün, Nursel Sezgin","doi":"10.1002/mop.70198","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Human hair is a significant biological sample in forensic science, biomedical research, and the cosmetic industry, with the presence of essential nutrients like zinc, copper, and silicon being indicative of health. This study aimed to investigate the elemental composition of human hair using Laser-Induced Breakdown Spectroscopy (LIBS) to assess differences across age groups. Nine volunteers provided hair samples, which were analyzed using the Foster + Freeman ECCO2 LIBS system. Quantitative analysis of elemental concentrations was performed, and elemental ratios, such as Mg/Ca, Mg/Si, Mg/Fe, and Fe/Mn, were calculated to compare the samples. Results demonstrated that LIBS is a fast, accurate, and non-destructive method for detecting and quantifying mineral elements in human hair. The study highlights age-related differences in elemental concentrations, offering insights into the use of hair analysis for monitoring nutritional and health status. LIBS could be a promising tool for further studies in clinical and forensic applications.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Human Hair by Laser-Induced Breakdown Spectroscopy: Qualitative and Quantitative Analysis of Content Element in Human Hair\",\"authors\":\"Ines Arbi, Gündüz Yümün, Nursel Sezgin\",\"doi\":\"10.1002/mop.70198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Human hair is a significant biological sample in forensic science, biomedical research, and the cosmetic industry, with the presence of essential nutrients like zinc, copper, and silicon being indicative of health. This study aimed to investigate the elemental composition of human hair using Laser-Induced Breakdown Spectroscopy (LIBS) to assess differences across age groups. Nine volunteers provided hair samples, which were analyzed using the Foster + Freeman ECCO2 LIBS system. Quantitative analysis of elemental concentrations was performed, and elemental ratios, such as Mg/Ca, Mg/Si, Mg/Fe, and Fe/Mn, were calculated to compare the samples. Results demonstrated that LIBS is a fast, accurate, and non-destructive method for detecting and quantifying mineral elements in human hair. The study highlights age-related differences in elemental concentrations, offering insights into the use of hair analysis for monitoring nutritional and health status. LIBS could be a promising tool for further studies in clinical and forensic applications.</p>\\n </div>\",\"PeriodicalId\":18562,\"journal\":{\"name\":\"Microwave and Optical Technology Letters\",\"volume\":\"67 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microwave and Optical Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mop.70198\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70198","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation of Human Hair by Laser-Induced Breakdown Spectroscopy: Qualitative and Quantitative Analysis of Content Element in Human Hair
Human hair is a significant biological sample in forensic science, biomedical research, and the cosmetic industry, with the presence of essential nutrients like zinc, copper, and silicon being indicative of health. This study aimed to investigate the elemental composition of human hair using Laser-Induced Breakdown Spectroscopy (LIBS) to assess differences across age groups. Nine volunteers provided hair samples, which were analyzed using the Foster + Freeman ECCO2 LIBS system. Quantitative analysis of elemental concentrations was performed, and elemental ratios, such as Mg/Ca, Mg/Si, Mg/Fe, and Fe/Mn, were calculated to compare the samples. Results demonstrated that LIBS is a fast, accurate, and non-destructive method for detecting and quantifying mineral elements in human hair. The study highlights age-related differences in elemental concentrations, offering insights into the use of hair analysis for monitoring nutritional and health status. LIBS could be a promising tool for further studies in clinical and forensic applications.
期刊介绍:
Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas.
- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering
All papers are subject to peer review before publication