人工智能驱动的自适应反馈焊接机

IF 2.5 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Benedikt von Querfurth, Shems-Eddine Belhout, Christian Knaak, Stefan Mann, Peter Abels, Carlo Holly, Jonathan Tatman, Darren Barborak, Mitch Hargadine
{"title":"人工智能驱动的自适应反馈焊接机","authors":"Benedikt von Querfurth,&nbsp;Shems-Eddine Belhout,&nbsp;Christian Knaak,&nbsp;Stefan Mann,&nbsp;Peter Abels,&nbsp;Carlo Holly,&nbsp;Jonathan Tatman,&nbsp;Darren Barborak,&nbsp;Mitch Hargadine","doi":"10.1007/s40194-024-01898-z","DOIUrl":null,"url":null,"abstract":"<div><p>The gas tungsten arc welding (GTAW) is a primary method for nuclear component fabrication and repair. Recent advancements in monitoring and automation technologies have made the shift toward fully automated arc welding more feasible, reducing the necessity for continuous human oversight. Two artificial intelligence-based networks were developed that utilize sensor-based feedback on a mechanized GTAW head. We present an image-based semantic segmentation convolutional neural network that identifies crucial features such as the weld pool, groove, wire, and electrode based on which geometric measurements are derived. A separate novel neural network predicts the weld bead geometry for multi-pass welds and inconsistent groove geometries. The application of both neural networks is a pre-requisite that enables the autonomous planning and execution of multi-pass welds to fill a groove.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 5","pages":"1419 - 1426"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01898-z.pdf","citationCount":"0","resultStr":"{\"title\":\"AI-driven autonomous adaptative feedback welding machine\",\"authors\":\"Benedikt von Querfurth,&nbsp;Shems-Eddine Belhout,&nbsp;Christian Knaak,&nbsp;Stefan Mann,&nbsp;Peter Abels,&nbsp;Carlo Holly,&nbsp;Jonathan Tatman,&nbsp;Darren Barborak,&nbsp;Mitch Hargadine\",\"doi\":\"10.1007/s40194-024-01898-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gas tungsten arc welding (GTAW) is a primary method for nuclear component fabrication and repair. Recent advancements in monitoring and automation technologies have made the shift toward fully automated arc welding more feasible, reducing the necessity for continuous human oversight. Two artificial intelligence-based networks were developed that utilize sensor-based feedback on a mechanized GTAW head. We present an image-based semantic segmentation convolutional neural network that identifies crucial features such as the weld pool, groove, wire, and electrode based on which geometric measurements are derived. A separate novel neural network predicts the weld bead geometry for multi-pass welds and inconsistent groove geometries. The application of both neural networks is a pre-requisite that enables the autonomous planning and execution of multi-pass welds to fill a groove.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"69 5\",\"pages\":\"1419 - 1426\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40194-024-01898-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01898-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01898-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

气体钨极电弧焊(GTAW)是核部件制造和修复的主要方法。最近监测和自动化技术的进步使得向全自动弧焊的转变更加可行,减少了持续人工监督的必要性。开发了两个基于人工智能的网络,利用基于传感器的反馈对机械化GTAW头。我们提出了一个基于图像的语义分割卷积神经网络,该网络可以识别关键特征,如焊接池、槽、导线和电极,这些特征是几何测量的基础。另一种新颖的神经网络预测了多道焊缝的焊缝几何形状和不一致的坡口几何形状。这两种神经网络的应用是实现自主规划和执行多道次焊接以填充槽的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven autonomous adaptative feedback welding machine

The gas tungsten arc welding (GTAW) is a primary method for nuclear component fabrication and repair. Recent advancements in monitoring and automation technologies have made the shift toward fully automated arc welding more feasible, reducing the necessity for continuous human oversight. Two artificial intelligence-based networks were developed that utilize sensor-based feedback on a mechanized GTAW head. We present an image-based semantic segmentation convolutional neural network that identifies crucial features such as the weld pool, groove, wire, and electrode based on which geometric measurements are derived. A separate novel neural network predicts the weld bead geometry for multi-pass welds and inconsistent groove geometries. The application of both neural networks is a pre-requisite that enables the autonomous planning and execution of multi-pass welds to fill a groove.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信