磁化稠密夸克物质的中微子能量和动量发射

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Ritesh Ghosh, Igor A. Shovkovy
{"title":"磁化稠密夸克物质的中微子能量和动量发射","authors":"Ritesh Ghosh,&nbsp;Igor A. Shovkovy","doi":"10.1007/JHEP04(2025)110","DOIUrl":null,"url":null,"abstract":"<p>Using first-principles field-theoretic methods, we investigate neutrino emission from strongly magnetized dense quark matter under conditions relevant to compact stars. We develop a customized approximation that fully accounts for the Landau-level quantization of electron states while neglecting such quantization for quarks. This approach is well-justified in dense quark matter, where the chemical potentials of up and down quarks significantly exceed those of electrons. Our analysis provides a detailed exploration of the influence of strong magnetic fields on neutrino emission, including both the modification of the total emission rate and the emergence of emission asymmetry relative to the magnetic field direction. We further examine the role of temperature in smoothing the oscillatory behavior of neutrino emission as a function of magnetic field strength. Additionally, we study the interplay between the Landau-level quantization of electrons and the Fermi-liquid effects of quarks in modifying the phase space of relevant weak processes. Finally, we briefly discuss the broader implications of magnetic fields on stellar cooling processes and the potential contribution of asymmetric neutrino emission to pulsar kicks.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)110.pdf","citationCount":"0","resultStr":"{\"title\":\"Neutrino energy and momentum emission from magnetized dense quark matter\",\"authors\":\"Ritesh Ghosh,&nbsp;Igor A. Shovkovy\",\"doi\":\"10.1007/JHEP04(2025)110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using first-principles field-theoretic methods, we investigate neutrino emission from strongly magnetized dense quark matter under conditions relevant to compact stars. We develop a customized approximation that fully accounts for the Landau-level quantization of electron states while neglecting such quantization for quarks. This approach is well-justified in dense quark matter, where the chemical potentials of up and down quarks significantly exceed those of electrons. Our analysis provides a detailed exploration of the influence of strong magnetic fields on neutrino emission, including both the modification of the total emission rate and the emergence of emission asymmetry relative to the magnetic field direction. We further examine the role of temperature in smoothing the oscillatory behavior of neutrino emission as a function of magnetic field strength. Additionally, we study the interplay between the Landau-level quantization of electrons and the Fermi-liquid effects of quarks in modifying the phase space of relevant weak processes. Finally, we briefly discuss the broader implications of magnetic fields on stellar cooling processes and the potential contribution of asymmetric neutrino emission to pulsar kicks.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)110.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)110\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)110","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用第一性原理场论方法,我们研究了强磁化致密夸克物质在致密恒星相关条件下的中微子发射。我们开发了一个定制的近似,充分考虑了电子态的朗道能级量子化,而忽略了夸克的这种量子化。这种方法在稠密的夸克物质中是合理的,在稠密的夸克物质中,上下夸克的化学势大大超过电子的化学势。我们的分析详细探讨了强磁场对中微子发射的影响,包括总发射速率的改变和相对于磁场方向的发射不对称的出现。我们进一步研究了温度作为磁场强度函数在平滑中微子发射振荡行为中的作用。此外,我们还研究了电子的朗道能级量子化与夸克的费米-液体效应在改变相关弱过程相空间中的相互作用。最后,我们简要讨论了磁场对恒星冷却过程的广泛影响以及不对称中微子发射对脉冲星踢动的潜在贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutrino energy and momentum emission from magnetized dense quark matter

Using first-principles field-theoretic methods, we investigate neutrino emission from strongly magnetized dense quark matter under conditions relevant to compact stars. We develop a customized approximation that fully accounts for the Landau-level quantization of electron states while neglecting such quantization for quarks. This approach is well-justified in dense quark matter, where the chemical potentials of up and down quarks significantly exceed those of electrons. Our analysis provides a detailed exploration of the influence of strong magnetic fields on neutrino emission, including both the modification of the total emission rate and the emergence of emission asymmetry relative to the magnetic field direction. We further examine the role of temperature in smoothing the oscillatory behavior of neutrino emission as a function of magnetic field strength. Additionally, we study the interplay between the Landau-level quantization of electrons and the Fermi-liquid effects of quarks in modifying the phase space of relevant weak processes. Finally, we briefly discuss the broader implications of magnetic fields on stellar cooling processes and the potential contribution of asymmetric neutrino emission to pulsar kicks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信