{"title":"逐回路贝科夫表示法 - 策略与实施","authors":"Hjalte Frellesvig","doi":"10.1007/JHEP04(2025)111","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we discuss the Baikov representation of Feynman integrals in its standard and loop-by-loop variants. The Baikov representation is a parametric representation, which has as its defining feature the fact that the integration variables are the propagators of the Feynman integral. For the loop-by-loop Baikov representation, we discuss in detail a strategy for how to make an optimal parametrization which is one that minimizes the number of extra integration variables that have to be introduced for a given Feynman integral. Furthermore, we present a Mathematica implementation, named BaikovPackage, that is able to generate the Baikov representation in its standard and loop-by-loop varieties. We also discuss some subtleties and open problems regarding Baikov representations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)111.pdf","citationCount":"0","resultStr":"{\"title\":\"The loop-by-loop Baikov representation — Strategies and implementation\",\"authors\":\"Hjalte Frellesvig\",\"doi\":\"10.1007/JHEP04(2025)111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we discuss the Baikov representation of Feynman integrals in its standard and loop-by-loop variants. The Baikov representation is a parametric representation, which has as its defining feature the fact that the integration variables are the propagators of the Feynman integral. For the loop-by-loop Baikov representation, we discuss in detail a strategy for how to make an optimal parametrization which is one that minimizes the number of extra integration variables that have to be introduced for a given Feynman integral. Furthermore, we present a Mathematica implementation, named BaikovPackage, that is able to generate the Baikov representation in its standard and loop-by-loop varieties. We also discuss some subtleties and open problems regarding Baikov representations.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)111.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)111\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)111","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The loop-by-loop Baikov representation — Strategies and implementation
In this paper, we discuss the Baikov representation of Feynman integrals in its standard and loop-by-loop variants. The Baikov representation is a parametric representation, which has as its defining feature the fact that the integration variables are the propagators of the Feynman integral. For the loop-by-loop Baikov representation, we discuss in detail a strategy for how to make an optimal parametrization which is one that minimizes the number of extra integration variables that have to be introduced for a given Feynman integral. Furthermore, we present a Mathematica implementation, named BaikovPackage, that is able to generate the Baikov representation in its standard and loop-by-loop varieties. We also discuss some subtleties and open problems regarding Baikov representations.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).