{"title":"从散射数据中提取共振参数的Jost函数的r矩阵型参数化","authors":"P. Vaandrager, M. L. Lekala, S. A. Rakityansky","doi":"10.1140/epja/s10050-025-01549-x","DOIUrl":null,"url":null,"abstract":"<div><p>A new method is proposed for fitting non-relativistic binary-scattering data and for extracting the parameters of possible quantum resonances in the compound system that is formed during the collision. The method combines the well-known <i>R</i>-matrix approach with the analysis based on the semi-analytic representation of the Jost functions. It is shown that such a combination has the advantages of both these approaches, namely, the number of the fitting parameters remains relatively small (as for the <i>R</i>-matrix approach) and the proper analytic structure of the <i>S</i>-matrix is preserved (as for the Jost function method). It is also shown that the new formalism, although closely related to the <i>R</i>-matrix method, has the benefit of no dependence on an arbitrary channel radius. The efficiency and accuracy of the proposed method are tested using a model single-channel potential. Artificial “experimental” data generated with this potential are fitted, and its known resonances are successfully recovered as zeros of the Jost function on the appropriate sheet of the Riemann surface of the energy.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-025-01549-x.pdf","citationCount":"0","resultStr":"{\"title\":\"R-matrix type parametrization of the Jost function for extracting the resonance parameters from scattering data\",\"authors\":\"P. Vaandrager, M. L. Lekala, S. A. Rakityansky\",\"doi\":\"10.1140/epja/s10050-025-01549-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new method is proposed for fitting non-relativistic binary-scattering data and for extracting the parameters of possible quantum resonances in the compound system that is formed during the collision. The method combines the well-known <i>R</i>-matrix approach with the analysis based on the semi-analytic representation of the Jost functions. It is shown that such a combination has the advantages of both these approaches, namely, the number of the fitting parameters remains relatively small (as for the <i>R</i>-matrix approach) and the proper analytic structure of the <i>S</i>-matrix is preserved (as for the Jost function method). It is also shown that the new formalism, although closely related to the <i>R</i>-matrix method, has the benefit of no dependence on an arbitrary channel radius. The efficiency and accuracy of the proposed method are tested using a model single-channel potential. Artificial “experimental” data generated with this potential are fitted, and its known resonances are successfully recovered as zeros of the Jost function on the appropriate sheet of the Riemann surface of the energy.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"61 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epja/s10050-025-01549-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-025-01549-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01549-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
R-matrix type parametrization of the Jost function for extracting the resonance parameters from scattering data
A new method is proposed for fitting non-relativistic binary-scattering data and for extracting the parameters of possible quantum resonances in the compound system that is formed during the collision. The method combines the well-known R-matrix approach with the analysis based on the semi-analytic representation of the Jost functions. It is shown that such a combination has the advantages of both these approaches, namely, the number of the fitting parameters remains relatively small (as for the R-matrix approach) and the proper analytic structure of the S-matrix is preserved (as for the Jost function method). It is also shown that the new formalism, although closely related to the R-matrix method, has the benefit of no dependence on an arbitrary channel radius. The efficiency and accuracy of the proposed method are tested using a model single-channel potential. Artificial “experimental” data generated with this potential are fitted, and its known resonances are successfully recovered as zeros of the Jost function on the appropriate sheet of the Riemann surface of the energy.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.