全息二维cft中的广义克劳修斯不等式和纠缠产生

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Tanay Kibe, Ayan Mukhopadhyay, Pratik Roy
{"title":"全息二维cft中的广义克劳修斯不等式和纠缠产生","authors":"Tanay Kibe,&nbsp;Ayan Mukhopadhyay,&nbsp;Pratik Roy","doi":"10.1007/JHEP04(2025)096","DOIUrl":null,"url":null,"abstract":"<p>Utilizing quantum information theory, it has been shown that irreversible entropy production is bounded from both below and above in physical processes. Both these bounds are positive and generalize the Clausius inequality. Such bounds are, however, obtained from distance measures in the space of states, which are hard to define and compute in quantum field theories. We show that the quantum null energy condition (QNEC) can be utilized to obtain both lower and upper bounds on irreversible entropy production for quenches leading to transitions between thermal states carrying uniform momentum density in two dimensional holographic conformal field theories. We achieve this by refining earlier methods and developing an algebraic procedure for determining HRT surfaces in arbitrary Bañados-Vaidya geometries which are dual to quenches involving transitions between general quantum equilibrium states (e.g. thermal states) where the QNEC is saturated. We also discuss results for the growth and thermalization of entanglement entropy for arbitrary initial and final temperatures and momentum densities. The rate of quadratic growth of entanglement just after the quench depends only on the change in the energy density and is independent of the entangling length. For sufficiently large entangling lengths, the entanglement tsunami phenomenon can be established. Finally, we study recovery of the initial state from the evolving entanglement entropy and argue that the Renyi entropies should give us a refined understanding of scrambling of quantum information.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)096.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Clausius inequalities and entanglement production in holographic two-dimensional CFTs\",\"authors\":\"Tanay Kibe,&nbsp;Ayan Mukhopadhyay,&nbsp;Pratik Roy\",\"doi\":\"10.1007/JHEP04(2025)096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utilizing quantum information theory, it has been shown that irreversible entropy production is bounded from both below and above in physical processes. Both these bounds are positive and generalize the Clausius inequality. Such bounds are, however, obtained from distance measures in the space of states, which are hard to define and compute in quantum field theories. We show that the quantum null energy condition (QNEC) can be utilized to obtain both lower and upper bounds on irreversible entropy production for quenches leading to transitions between thermal states carrying uniform momentum density in two dimensional holographic conformal field theories. We achieve this by refining earlier methods and developing an algebraic procedure for determining HRT surfaces in arbitrary Bañados-Vaidya geometries which are dual to quenches involving transitions between general quantum equilibrium states (e.g. thermal states) where the QNEC is saturated. We also discuss results for the growth and thermalization of entanglement entropy for arbitrary initial and final temperatures and momentum densities. The rate of quadratic growth of entanglement just after the quench depends only on the change in the energy density and is independent of the entangling length. For sufficiently large entangling lengths, the entanglement tsunami phenomenon can be established. Finally, we study recovery of the initial state from the evolving entanglement entropy and argue that the Renyi entropies should give us a refined understanding of scrambling of quantum information.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)096.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)096\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)096","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用量子信息理论,已经证明了不可逆熵的产生在物理过程中是有界的。这两个边界都是正的,并且推广了克劳修斯不等式。然而,这样的边界是从状态空间的距离度量中获得的,这在量子场论中很难定义和计算。我们证明了量子零能条件(QNEC)可以用来获得二维全息共形场理论中导致具有均匀动量密度的热态之间转换的猝灭的不可逆熵产生的下界和上界。我们通过改进早期的方法和开发一种代数程序来确定任意Bañados-Vaidya几何形状中的HRT表面,这些几何形状是对偶的,涉及QNEC饱和的一般量子平衡态(例如热态)之间的转换。我们还讨论了任意初始和最终温度和动量密度下纠缠熵的增长和热化的结果。猝灭后纠缠态的二次增长速率仅与能量密度的变化有关,与纠缠态长度无关。对于足够大的纠缠长度,可以建立纠缠海啸现象。最后,我们从演化的纠缠熵中研究了初始状态的恢复,并认为Renyi熵应该让我们更好地理解量子信息的置乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Clausius inequalities and entanglement production in holographic two-dimensional CFTs

Utilizing quantum information theory, it has been shown that irreversible entropy production is bounded from both below and above in physical processes. Both these bounds are positive and generalize the Clausius inequality. Such bounds are, however, obtained from distance measures in the space of states, which are hard to define and compute in quantum field theories. We show that the quantum null energy condition (QNEC) can be utilized to obtain both lower and upper bounds on irreversible entropy production for quenches leading to transitions between thermal states carrying uniform momentum density in two dimensional holographic conformal field theories. We achieve this by refining earlier methods and developing an algebraic procedure for determining HRT surfaces in arbitrary Bañados-Vaidya geometries which are dual to quenches involving transitions between general quantum equilibrium states (e.g. thermal states) where the QNEC is saturated. We also discuss results for the growth and thermalization of entanglement entropy for arbitrary initial and final temperatures and momentum densities. The rate of quadratic growth of entanglement just after the quench depends only on the change in the energy density and is independent of the entangling length. For sufficiently large entangling lengths, the entanglement tsunami phenomenon can be established. Finally, we study recovery of the initial state from the evolving entanglement entropy and argue that the Renyi entropies should give us a refined understanding of scrambling of quantum information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信