绿色纳米技术:通过冲泡咖啡渣提取物合成银纳米粒子

IF 2.3 4区 化学 Q2 Agricultural and Biological Sciences
Dewi Kurnianingsih Arum Kusumahastuti, Agung Rimayanto Gintu
{"title":"绿色纳米技术:通过冲泡咖啡渣提取物合成银纳米粒子","authors":"Dewi Kurnianingsih Arum Kusumahastuti,&nbsp;Agung Rimayanto Gintu","doi":"10.1007/s10847-025-01294-0","DOIUrl":null,"url":null,"abstract":"<div><p>Silver nanoparticles (AgNPs) are increasingly valued for their diverse applications, but traditional preparation methods often involve toxic chemicals, necessitating environmentally friendly alternatives. This study explores a sustainable alternative: the green synthesis of AgNPs using brewed coffee grounds (BCG). BCG, a readily available agricultural byproduct rich in phenolic compounds, particularly chlorogenic acid, acts as a reducing and capping agent, facilitating the sustainable and efficient reduction of silver ions to AgNPs. The preparation process was optimized by varying the pH (6 and 8), impacting nanoparticle size and morphology. Characterizations using UV-Vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy confirmed the formation of crystalline AgNPs with a face-centered cubic structure. The results demonstrate that alkaline conditions (pH 8) yielded smaller, more uniformly distributed AgNPs with superior stability than those prepared at pH 6. This green synthesis method offers a promising approach to producing AgNPs while promoting sustainability and resource efficiency. The study highlights the potential for waste valorization and the development of eco-friendly nanomaterials for various applications.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"105 3-4","pages":"241 - 247"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green nanotechnology: silver nanoparticle synthesis via brewed coffee grounds extract\",\"authors\":\"Dewi Kurnianingsih Arum Kusumahastuti,&nbsp;Agung Rimayanto Gintu\",\"doi\":\"10.1007/s10847-025-01294-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silver nanoparticles (AgNPs) are increasingly valued for their diverse applications, but traditional preparation methods often involve toxic chemicals, necessitating environmentally friendly alternatives. This study explores a sustainable alternative: the green synthesis of AgNPs using brewed coffee grounds (BCG). BCG, a readily available agricultural byproduct rich in phenolic compounds, particularly chlorogenic acid, acts as a reducing and capping agent, facilitating the sustainable and efficient reduction of silver ions to AgNPs. The preparation process was optimized by varying the pH (6 and 8), impacting nanoparticle size and morphology. Characterizations using UV-Vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy confirmed the formation of crystalline AgNPs with a face-centered cubic structure. The results demonstrate that alkaline conditions (pH 8) yielded smaller, more uniformly distributed AgNPs with superior stability than those prepared at pH 6. This green synthesis method offers a promising approach to producing AgNPs while promoting sustainability and resource efficiency. The study highlights the potential for waste valorization and the development of eco-friendly nanomaterials for various applications.</p></div>\",\"PeriodicalId\":638,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":\"105 3-4\",\"pages\":\"241 - 247\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-025-01294-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-025-01294-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green nanotechnology: silver nanoparticle synthesis via brewed coffee grounds extract

Silver nanoparticles (AgNPs) are increasingly valued for their diverse applications, but traditional preparation methods often involve toxic chemicals, necessitating environmentally friendly alternatives. This study explores a sustainable alternative: the green synthesis of AgNPs using brewed coffee grounds (BCG). BCG, a readily available agricultural byproduct rich in phenolic compounds, particularly chlorogenic acid, acts as a reducing and capping agent, facilitating the sustainable and efficient reduction of silver ions to AgNPs. The preparation process was optimized by varying the pH (6 and 8), impacting nanoparticle size and morphology. Characterizations using UV-Vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy confirmed the formation of crystalline AgNPs with a face-centered cubic structure. The results demonstrate that alkaline conditions (pH 8) yielded smaller, more uniformly distributed AgNPs with superior stability than those prepared at pH 6. This green synthesis method offers a promising approach to producing AgNPs while promoting sustainability and resource efficiency. The study highlights the potential for waste valorization and the development of eco-friendly nanomaterials for various applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
0
审稿时长
3-8 weeks
期刊介绍: The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites. The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信