S. Shravan Kumar Reddy, S. Shanmukharao Samatham, T. Sowmyya, M. Sreenath Reddy, G. R. Turpu, Ch. Gopal Reddy, P. Yadagiri Reddy, V. Raghavendra Reddy
{"title":"探索La取代对DyFeO3磁性和电学行为的影响","authors":"S. Shravan Kumar Reddy, S. Shanmukharao Samatham, T. Sowmyya, M. Sreenath Reddy, G. R. Turpu, Ch. Gopal Reddy, P. Yadagiri Reddy, V. Raghavendra Reddy","doi":"10.1007/s10948-025-06967-y","DOIUrl":null,"url":null,"abstract":"<div><p>Structural, electrical, magnetic, and <sup>57</sup>Fe Mössbauer studies on lanthanum (La)-doped DyFeO<sub>3</sub> (Dy<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub>) are reported in this paper. X-ray diffraction measurements confirm the lattice expansion with La doping. Raman spectroscopic studies give insights into the doping of La into Dy in DyFeO<sub>3</sub>. The temperature-dependent magnetization studies of samples show that there is a shift in the spin-reorientation transition temperature (<i>T</i><sub>SR</sub>) towards the lower temperatures with the increase of La-doping concentration for pure DyFeO<sub>3</sub> (DFO), Dy<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> (La2), and Dy<sub>0.6</sub>La<sub>0.4</sub>FeO<sub>3</sub> (La4) samples which could be due to the weakening of Fe<sup>3+</sup>-Dy<sup>3+</sup> exchange interaction. Isothermal magnetization data and magnetically split sextet <sup>57</sup>Fe Mossbauer spectra of all the samples confirm the presence of antiferromagnetic ordering at room temperature. In addition, the observed magnetization data of LaFeO<sub>3</sub> (<i>x</i> = 1.0) sample indicates the presence of spin-glasslike behavior. It is also observed that with the increase of La doping, porosity increases resulting in the enhancement of leakage current density. Ohmic and space charge limited conduction (SCLC) mechanisms explain the conduction mechanism present in the samples.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Effect of La Substitution on Magnetic and Electrical Behavior of DyFeO3\",\"authors\":\"S. Shravan Kumar Reddy, S. Shanmukharao Samatham, T. Sowmyya, M. Sreenath Reddy, G. R. Turpu, Ch. Gopal Reddy, P. Yadagiri Reddy, V. Raghavendra Reddy\",\"doi\":\"10.1007/s10948-025-06967-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural, electrical, magnetic, and <sup>57</sup>Fe Mössbauer studies on lanthanum (La)-doped DyFeO<sub>3</sub> (Dy<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub>) are reported in this paper. X-ray diffraction measurements confirm the lattice expansion with La doping. Raman spectroscopic studies give insights into the doping of La into Dy in DyFeO<sub>3</sub>. The temperature-dependent magnetization studies of samples show that there is a shift in the spin-reorientation transition temperature (<i>T</i><sub>SR</sub>) towards the lower temperatures with the increase of La-doping concentration for pure DyFeO<sub>3</sub> (DFO), Dy<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> (La2), and Dy<sub>0.6</sub>La<sub>0.4</sub>FeO<sub>3</sub> (La4) samples which could be due to the weakening of Fe<sup>3+</sup>-Dy<sup>3+</sup> exchange interaction. Isothermal magnetization data and magnetically split sextet <sup>57</sup>Fe Mossbauer spectra of all the samples confirm the presence of antiferromagnetic ordering at room temperature. In addition, the observed magnetization data of LaFeO<sub>3</sub> (<i>x</i> = 1.0) sample indicates the presence of spin-glasslike behavior. It is also observed that with the increase of La doping, porosity increases resulting in the enhancement of leakage current density. Ohmic and space charge limited conduction (SCLC) mechanisms explain the conduction mechanism present in the samples.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-025-06967-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06967-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Exploring the Effect of La Substitution on Magnetic and Electrical Behavior of DyFeO3
Structural, electrical, magnetic, and 57Fe Mössbauer studies on lanthanum (La)-doped DyFeO3 (Dy1-xLaxFeO3) are reported in this paper. X-ray diffraction measurements confirm the lattice expansion with La doping. Raman spectroscopic studies give insights into the doping of La into Dy in DyFeO3. The temperature-dependent magnetization studies of samples show that there is a shift in the spin-reorientation transition temperature (TSR) towards the lower temperatures with the increase of La-doping concentration for pure DyFeO3 (DFO), Dy0.8La0.2FeO3 (La2), and Dy0.6La0.4FeO3 (La4) samples which could be due to the weakening of Fe3+-Dy3+ exchange interaction. Isothermal magnetization data and magnetically split sextet 57Fe Mossbauer spectra of all the samples confirm the presence of antiferromagnetic ordering at room temperature. In addition, the observed magnetization data of LaFeO3 (x = 1.0) sample indicates the presence of spin-glasslike behavior. It is also observed that with the increase of La doping, porosity increases resulting in the enhancement of leakage current density. Ohmic and space charge limited conduction (SCLC) mechanisms explain the conduction mechanism present in the samples.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.