{"title":"基于等离子体催化的CO2转化研究进展与展望","authors":"Lefei Cao, Fei Qi, Nan Zhang, Yayun Pu, Xiaosheng Tang, Qiang Huang","doi":"10.1016/j.decarb.2025.100109","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issues of the greenhouse effect and energy dilemma, it is a global hot topic on converting CO<sub>2</sub> to valuable chemicals and useable fuels. In this review, firstly, we shortly summarize different CO<sub>2</sub> conversion methods including thermal catalysis, biocatalysis, electrocatalysis, photocatalysis, and plasma catalysis. Then, a comprehensive overview of the currently explored plasma driven CO<sub>2</sub> conversion is presented, such as microwave discharge plasma, gliding arc discharge plasma, radiofrequency inductively coupled plasma, and dielectric barrier discharge plasma, with an emphasis on their experimental setups, achievements and limitations. Furthermore, the activation of CO<sub>2</sub> conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail. Finally, the associated challenges and future development trends for plasma catalytic CO<sub>2</sub> conversion are briefly concluded.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"8 ","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress and future of CO2 conversion based on plasma catalysis\",\"authors\":\"Lefei Cao, Fei Qi, Nan Zhang, Yayun Pu, Xiaosheng Tang, Qiang Huang\",\"doi\":\"10.1016/j.decarb.2025.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the issues of the greenhouse effect and energy dilemma, it is a global hot topic on converting CO<sub>2</sub> to valuable chemicals and useable fuels. In this review, firstly, we shortly summarize different CO<sub>2</sub> conversion methods including thermal catalysis, biocatalysis, electrocatalysis, photocatalysis, and plasma catalysis. Then, a comprehensive overview of the currently explored plasma driven CO<sub>2</sub> conversion is presented, such as microwave discharge plasma, gliding arc discharge plasma, radiofrequency inductively coupled plasma, and dielectric barrier discharge plasma, with an emphasis on their experimental setups, achievements and limitations. Furthermore, the activation of CO<sub>2</sub> conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail. Finally, the associated challenges and future development trends for plasma catalytic CO<sub>2</sub> conversion are briefly concluded.</div></div>\",\"PeriodicalId\":100356,\"journal\":{\"name\":\"DeCarbon\",\"volume\":\"8 \",\"pages\":\"Article 100109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DeCarbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949881325000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881325000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progress and future of CO2 conversion based on plasma catalysis
To address the issues of the greenhouse effect and energy dilemma, it is a global hot topic on converting CO2 to valuable chemicals and useable fuels. In this review, firstly, we shortly summarize different CO2 conversion methods including thermal catalysis, biocatalysis, electrocatalysis, photocatalysis, and plasma catalysis. Then, a comprehensive overview of the currently explored plasma driven CO2 conversion is presented, such as microwave discharge plasma, gliding arc discharge plasma, radiofrequency inductively coupled plasma, and dielectric barrier discharge plasma, with an emphasis on their experimental setups, achievements and limitations. Furthermore, the activation of CO2 conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail. Finally, the associated challenges and future development trends for plasma catalytic CO2 conversion are briefly concluded.