Ruiying Zhu , Lifeng Ding , Qiang Li , Hongmei Dong , Mengjie Shi , Zhengwei Song , Shengling Li , Hao Chen , Jiahang Zhang
{"title":"基于低检出限双金属FeCo - MOFs电化学传感器的痕量铜离子检测","authors":"Ruiying Zhu , Lifeng Ding , Qiang Li , Hongmei Dong , Mengjie Shi , Zhengwei Song , Shengling Li , Hao Chen , Jiahang Zhang","doi":"10.1016/j.rechem.2025.102266","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental contamination by heavy metal ions poses significant health risks, emphasizing the urgent need for effective detection methods. In the work, it develops a bimetallic Fe<img>Co MOFs electrochemical sensor for trace copper ions detection in water, using a NaOH-mediated synthesis to modify MOFs materials. Iron ion doping introduces a bimetallic site, significantly enhancing the conductivity of the original ZIF-67. The addition of reduced graphene oxide (RGO) further improves conductivity due to its folded structure, which facilitates greater MOF deposition on the electrode surface. Additionally, the incorporation of Nafion enhances the stability of the MOF in aqueous environments. Sensitivity tests show effective detection of Cu<sup>2+</sup> in the concentration range of 0.01–1 μM, with a LOD of 6.54 nM. And the sensor has exceptional stability, reproducibility, and interference resistance. The sensor demonstrated successful application in detecting Cu<sup>2+</sup> in water samples, showing potential for broader applications in monitoring other heavy metal ions in environmental water samples.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"15 ","pages":"Article 102266"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based on bimetallic FeCo MOFs electrochemical sensor with a low detection limit for trace copper ions detection\",\"authors\":\"Ruiying Zhu , Lifeng Ding , Qiang Li , Hongmei Dong , Mengjie Shi , Zhengwei Song , Shengling Li , Hao Chen , Jiahang Zhang\",\"doi\":\"10.1016/j.rechem.2025.102266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmental contamination by heavy metal ions poses significant health risks, emphasizing the urgent need for effective detection methods. In the work, it develops a bimetallic Fe<img>Co MOFs electrochemical sensor for trace copper ions detection in water, using a NaOH-mediated synthesis to modify MOFs materials. Iron ion doping introduces a bimetallic site, significantly enhancing the conductivity of the original ZIF-67. The addition of reduced graphene oxide (RGO) further improves conductivity due to its folded structure, which facilitates greater MOF deposition on the electrode surface. Additionally, the incorporation of Nafion enhances the stability of the MOF in aqueous environments. Sensitivity tests show effective detection of Cu<sup>2+</sup> in the concentration range of 0.01–1 μM, with a LOD of 6.54 nM. And the sensor has exceptional stability, reproducibility, and interference resistance. The sensor demonstrated successful application in detecting Cu<sup>2+</sup> in water samples, showing potential for broader applications in monitoring other heavy metal ions in environmental water samples.</div></div>\",\"PeriodicalId\":420,\"journal\":{\"name\":\"Results in Chemistry\",\"volume\":\"15 \",\"pages\":\"Article 102266\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211715625002498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625002498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Based on bimetallic FeCo MOFs electrochemical sensor with a low detection limit for trace copper ions detection
Environmental contamination by heavy metal ions poses significant health risks, emphasizing the urgent need for effective detection methods. In the work, it develops a bimetallic FeCo MOFs electrochemical sensor for trace copper ions detection in water, using a NaOH-mediated synthesis to modify MOFs materials. Iron ion doping introduces a bimetallic site, significantly enhancing the conductivity of the original ZIF-67. The addition of reduced graphene oxide (RGO) further improves conductivity due to its folded structure, which facilitates greater MOF deposition on the electrode surface. Additionally, the incorporation of Nafion enhances the stability of the MOF in aqueous environments. Sensitivity tests show effective detection of Cu2+ in the concentration range of 0.01–1 μM, with a LOD of 6.54 nM. And the sensor has exceptional stability, reproducibility, and interference resistance. The sensor demonstrated successful application in detecting Cu2+ in water samples, showing potential for broader applications in monitoring other heavy metal ions in environmental water samples.